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Abstract

Active perception refers to a theoretical approach to theysof perception
grounded on the idea that perceiving is a way of acting, ratien a cognitive
process whereby the brain constructs an internal repies@amof the world. The
operational principles of active perception can be effetyi tested by building
robot-based models in which the relationship between péueé categories and
the body-environment interactions can be experimentadinipulated. In this pa-
per, we study the mechanisms of tactile perception in a taskhich a neuro-
controlled anthropomorphic robotic arm, equipped withrseagrained tactile sen-
sors, is required to perceptually discriminate betweerespal and ellipsoid ob-
jects. The results of this work demonstrate that evolvedicoaus time non-linear
neural controllers can bring forth strategies to allow thre o effectively solve the
discrimination task.

1 Introduction

An important consequence of being situated in an environroensists in the fact
that the sensory stimuli experienced by a robot are co-thited by the action per-
formed by the robot itself. That is, the actions and the behaexhibited by the
robot later influence the stimuli sensed by the robot, themation in time, and the
sequence with which they are experienced. This implies {lijaperception (i.e., the
ability to categorize objects and events in the environinisrgtrongly influenced by
action [Naz, 2005]; and (ii) sensory-motor coordination (i.e., theliapto act in order

to sense stimuli or sequence of stimuli which enable andlandr the ability of the

robot to perform its task) is a crucial aspect of perceptioth @more generally of situ-
ated intelligence [Pfeifer and Scheier, 1999, Nolfi, 2002eB 2003, Tuci et al., 2008,
Nolfi, ress].

Although the importance of the topic is now widely recogulizeur understanding
of how natural organisms perceive actively their environtiestill limited to few spe-
cific cases (e.g., [Franceschini et al., 1992, Dill, 1998jimilarly, our ability to build
artificial systems which are able to exploit sensory-motardination is still very lim-
ited. The first type of limitation can be explained by considg that experimental
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research rarely takes into account detailed data encodwghganisms interact with
their environment over time. The second type of limitatiam &e explained by con-
sidering that, from the point of view of the designer of theat identifying the way in
which the robot should interact with the environment in orbesense the favourable
sensory states is extremely difficult. One promising apghmoa this respect, is con-
stituted by adaptive methods in which the robots are left fredetermine how they
interact with environment (i.e., how they behave, in ordesdlve their task).

This paper illustrates how a further elaboration of adapatiethods proposed in re-
lated studies can be successfully applied to a significant immmplex scenario [Nolfi, 2002,
Beer, 2003, Scheier et al., 1998, Nolfi, 2005]. In particulse demonstrate how a
non-trivial problem which consists in perceptually catégiag objects with different
shapes can be solved in an effective and robust way throughi@ationary adaptive
method. With this method, free parameters (i.e., thoseabtamodified during the
adaptive process) encode features that regulate the faieegrinteraction between the
robot and the environment. The adaptive process consigttdiming or discarding the
free parameters on the basis of their effects at the levélebverall behaviour exhib-
ited by the robot (see [Nolfi and Marocco, 2000, Harvey et281Q5] for an illustration
of the methodological approach employed).

The proposed scenario involve a simulated anthropomorphitic arm, equipped
with coarse-grained tactile sensors and propriosensoichvéncode the position of
the arm and of the hand (see Figure 1). The robot is asked teterally categorize
spherical and ellipsoid objects. The two objects are rasirailar (i.e., the longest
radius of the ellipsoid is only 20% longer than the radiustaf sphere). The robot
is allowed to interact in different trials (each lasting £@eds) with different objects
(one at a time) placed over a table. The objects are placdekitwo different initial
locations shown in Figure 1(c). Moreover, ellipsoid obgeate placed in orientations
which are randomly chosen, in each trial, within the foutgexshown in Figure 1(d).

The free parameters that are varied during the adaptiveepsoconsists in the
synaptic weights and in the time constant of the neurons @néiruous time neural
controller shown in Figure 2. Variation of the free parametge retained or discarded
on the basis of the ability of the robot to: (i) categorize shape of the objects at the
end of each trial (i.e., to label objects with different séawith non-overlapping out-
puts in a two-dimensional categorization space); and €@@ktouching the object with
the palm of the hand. The robots are thus left free to deteximinv to interact with the
object (providing that they keep touching the object with galm) and how to label
each category (provided that the labels for the two objeatsat overlap in the cate-
gorization space). In the next four sections, we descrilieiails the characteristics
of the body of the robot, of the sensors and of the actuatétsieoneural controller,
of the evolutionary algorithm, and of the fithess functianséction 6, we describe the
obtained results. Finally, in section 7, we draw our corolus and we illustrate our
future plans.

2 TheRobot's Structure

The simulated robot consists of an anthropomorphic rokatic with 7 actuated de-
grees of freedoms (hereafter DOFs) and a hand with 20 adii®d-s. Propriocep-
tive and tactile sensors are distributed on the arm and thd.h@he robot and the
robot/environmental interactions are simulated using fdautame Dynamics (NGD),
a library for accurately simulating rigid body dynamics amallisions (more details



Figure 1. The kinematic chain (a) of the arm, and (b) of thedharCylinders
represent rotational DOFs. The axes of cylinders indichée dorresponding axis
of rotation. The links among cylinders represents the rigpdnections that make
up the arm structure. The numbers from 1 to 10 refer to thespafrtthe hand
equipped with tactile sensors whose readings are inputh®frobot controller.
See the text for details on the notation. (c) The two initiakifions. Angle of
joints Jy, ..., J; are{—50°, —20°, —20°, —100°, —30°,0°, —10°} for position A, and
{-100°,0°,10°,—30°,0°,0°,—10°} for position B. The sphere and the ellipsoid
viewed (d) from above; (e) from the left. The radius of theesghis 2.5 cm. The
radii of the ellipsoid are 2.5, 3.0 and 2.5 cm. In (d) the agdmdicate the intervals
within which the initial rotation of the ellipsoid is set.

atww. newt ondynami ¢s. con). The arm consists mainly of three elements: the
arm, the forearm, and the wrist (see Figure 1(a)). Theseearitsmare connected
through articulations displaced into the shoulder (jointfor the extension/flexion,
Jo for the abduction/adduction, anf} for the supination/pronation movements), the
elbow (joint.J, for the extension/flexion movements), and the wrist (joiftsJs, J7

for the pitch/roll/yaw movements).

The robotic hand is composed of a palm and fourteen phalasggments that
make up the digits (two for the thumb and three for each of therofour fingers)
connected through 15 joints with 20 DOFs (see Figure 1(bhe jbints in the hand
belong to three different types: metacarpophalangeal (Mi®ximal interphalangeal
(DIP), and distal interphalangeal (PIP). All of them briragth the extension/flexion
movements of each finger while only the MP joints are for thduation/adduction
movements (Figure 1(b)). The thumb has an extra DOF in MRgoivhich is for
the axial rotation. This rotation makes possible to movetithuenb towards the other
fingers (see [Massera et al., 2007] for a detailed descnigtidhe structural properties
of the arm). The joints of the arm are actuated by two simdlatgagonist muscles
implemented accordingly to the Hill's muscle model, as tiedan the next Section.



3 TheRobot’s Sensors, Controller, and Actuators

The agent controller consists of a continuous time rectimen-linear network (CTRNN)
with 22 sensory neurons, 8 internal neurons, and 18 outpubns (see Figure 2 and
also [Beer and Gallagher, 1992]). At each time step, theatan valueg; of sensory
neurong = 1,..,7 is updated on the basis of the state of the proprioceptivesemof
the arm and of the wrist which encode the current anglesalipecaled in the range
[-1,1], of the seven corresponding joints located on the arm andhemtist (i.e.,
joints Jy, Ja, Js3, J4, Js5, Jg, andJ; in Figure 1(a)). The activation valugsof sensory
neuronsi = 8,..,17 is updated on the basis of the state of tactile sensorshiitdd
over the hand. These sensors are located on the palm, oncibredsghalange of the
thumb, and on the first and third phalange of each finger (spaé&il(b)). These sen-
sors return 1 if the corresponding part of the hand is in adinvtéh any another body
(e.g., the table, the sphere, the ellipsoid, or other pdrteoarm), otherwise 0. The
activation valueg; of sensory neuronis= 18, .., 22 is updated on the basis of the state
of the hand proprioceptive sensors which encode the cuesg¢ansion/flexion state of
the five corresponding fingers (i.e., the state of the MP-Btjfor the thumb and the
MP joints of the other fingers). The readings of the hand pospnsors are linearly
scaled in the rangp), 1] (with O for fully extended and 1 for fully flexed finger). To
take into account the fact that sensors are noisy, tactilsase return, with 5% prob-
ability, a value different from the computed one, and 5% amif noise is added to
proprioceptive sensors.

Internal neurons are fully connected. Additionally, eagteinal neuron receives
one incoming synapse from each sensory neuron. Each outpubm receives one
incoming synapse from each internal neuron. There are eatdibnnections between
sensory and output neurons. The network neurons are gal/eyribe following equa-
tion:

J —vi + 9li; i=1,.,22
TilYi = m .
—Y; + Ej:n wjio(y; + B5); 1=23,..,48;
n =1, m = 30 for i = 23, .., 30; (1)
n =23, m = 30 fori = 31, .., 48;
1
o(z) = 1+e®

In this equation, using terms derived from an analogy witli neuronsy; represents
the cell potentialy; the decay constang,is a gain factor/; the intensity of the pertur-
bation on sensory neuranw;; the strength of the synaptic connection from neufon
to neurori, 5; the bias termg (y; + ;) the firing rate.r; with ¢ = 23, .., 30, 3; with
i = 1,..,48, all the network connection weights ;, andg are genetically specified
networks’ parameters; with i = 1, ...,22 andi = 31, ..,48 is equal toAT. There is
one single bias for all the sensory neurons.

The activation valueg; of motor neurons determine the state of the simulated mus-
cles of the arm. In particular, the total force exerted by @cfiis the sum of three
forcesTa(o(y; + 5i),x) + Tp(x) + Ty (z), which are calculated on the basis of the



following equations:

As Tmaz SC—R 2
TA :O'(yz + /B’L) <_ h }2(2 L) + Tmaz) (2)
L
R2
Agy = — L
" (Lonar — B3)
exp {Ksh%} -1
P exp{K} —1
Ty =b-i

whereo (y; + ;) is the firing rate of output neuroris= 31, .., 46, with : = 31,32
for joint Jy, ¢ = 33, 34 for joint J3, i = 35, 36 for joint Js, ¢ = 37,38 for joint Jy,

1 = 39,40 for joint J5, i = 41,42 for joint Jg, i = 43,44 for joint J7. z is the current
elongation of the muscld;,,,.,. and Ry, are the maximum and the resting length of the
muscleT},.... is the maximum force that could be generat&d;, is the passive shape
factor andb is the viscosity coefficient. The parameters of the equati@nidentical
for all fourteen muscles controlling the seven DOFs of tlre and have been set to the
following values: K¢, = 3.0, Ry, = 2.5, Lyjae = 3.7, b = 0.9, Ag, = 4.34 with the
exception of parametéf;,,,.. which is set to3000N for joint .J5, to 300N for joints
J1, J3, Jy, and.Js, and to200N for joints Jg and.J;. Muscle elongation is simulated
by linearly mapping within specific angular ranges the autremgular position of each
DOF (see [Massera et al., 2007] for details).

The joints of the hand are actuated by a limited number ofpeddent variables
through a velocity-proportional controller. That is, ftietextension/flexion, the force
exerted by the MP, PIP, and DIP joints (MP-A, MP-B, and PIfhim¢ase of the thumb)
are controlled by a two steps process: first,dlieset equal to the firing rate(y; + 3;)
of the output neuromn, linearly mapped into the rande 90°, 0°]; second, the desired
angular positions of the finger joints MP, PIP, DIP are sef,td, and(2.0/3.0) - 6
respectively. For the thumb, its movement towards the diihgers (i.e., the extra
DOF in MP joints) corresponds to the desired angle-¢2.0/3.0)/6. The DOFs that
regulate the abduction/adduction movements of the fingeraat actuated.

The activation valueg; of output neurong = 47,48 are used to categorize the
shape of the object (i.e., to produce different output pastéor different object types
(see Section 5).

4 TheEvolutionary Algorithm

A simple generational genetic algorithm is employed to setgarameters of the net-
works (see [Goldberg, 1989]). The initial population cam$al00 genotypes. Gener-
ations following the first one are produced by a combinatiosetection with elitism,
and mutation. For each new generation, the 20 highest gcimritividuals (“the elite”)
from the previous generation are retained unchanged. Thaineler of the new pop-
ulation is generated by making 4 mutated copies of each oR€hbkighest scoring
individuals. Each genotype is a vector comprising 420 patars. Each parameter
is encoded with 16 bits. Initially, a random population ottes is generated. New
genotypes, except “the elite”, are produced by applyingatimn. Mutation entails that
each bit of the genotype can be flipped with a 1.5% probabibignotype parameters
are linearly mapped to produce network parameters withdhewing ranges: biases
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Figure 2: The architecture of the neural controllers.

B; € [—4,—2], weightsw;; € [—6, 6], gain factorg € [1,10] for all the sensory neu-
rons; decay constantswith i = 23, .., 30 are exponentially mapped info0~=2,10°-3]
with the lower bound corresponding to the integration stize-used to update the con-
troller and the upper bound, arbitrarily chosen, corresjgda abou% of the maximum
length of a trial (i.e., 2 s). Cell potentials are set to 0 whtem network is initialised
or reset, and circuits are integrated using the forwardi&thod with an integration
step-sizeAT = 0.01 (see [Strogatz, 2000]).

5 TheFitness Function

During evolution, each genotype is translated into an arntrotier and evaluated 8
times in position A and 8 times in position B (see Figure 1(EQr each position, the
arm experiences 4 times the ellipsoid and 4 times the spbeeagdtal of ¥ = 16 trials.

In each position, the rotation of the ellipsoid with respecdhe z-axis is randomly set
in the rangg350°, 10°] in the first presentation35°, 55°] in the second presentation,
[80°,100°] in the third presentation, and25°, 145°] in the fourth presentation (see
also Figure 1(d)). At the beginning of each trial, the arnogsalted in the corresponding
initial position (i.e., A or B), and the state of the neurahtroller is reset. A trial lasts

4 simulated seconds (T=400 time step). A trial is termin&adier in case the object
falls off the table.

In each triak, an agent is rewarded by an evaluation function which see#tsgess
its ability to recognise and distinguish the ellipsoid frtime sphere. This requires an
agent to be able to categorize the objects; that is, to pkema tn non-overlapping re-
gions of a two-dimensional categorization spéte [0, 1] x [0, 1]. The categorization
and the evaluation of the agent’s discrimination capadits done in the following
way:

e in each triale, the agent represents the experienced object (i.e., treesflor
the ellipsoidD) by associating to it a rectangls. or Rp. whose vertices are:

the bottom left vertex:

. ; ) ,
(0.95?1<Ii<;p0(y47( ) + Bar), 0.95%11<Ii<:r0(y48( )+ Bas))



the top right vertex:

t t
0,95HT12?§<T o (yar(t) + far), 0,95HT12?§<T o (yas(t) + fs))

e the sphere category, referred to@s, corresponds to the minimum bounding
box of all Rgs.; the ellipsoid category, referred to @%,, corresponds to the
minimum bounding box of alR ...

The final fithess' F’ attributed to an agent is the average score over a set ofal$ tri
and it is computed as follows:

E
1 de
P = — 1—
3 ( dmaz)
F {0 Pt
2 = area(CsNCp) i
| — Slarea(Cs)areal@o)] otherwise

with d. the euclidean distance between the object and the centregialm at the
end of the triak; d,,., the maximum distance between the palm and the object when
located on the tablel’ rewards the robots for touching the objedts.corresponds to

the inverse of a quantity which indicates how much the categtion space¢’s and

Cp overlap. F> = 1if Cs andCp do not overlap (i.e., it”s N Cp = ). The fact
that, for each individualF; must bel to be rewarded witlf,, constrains evolution to
work on strategies in which the palm is constantly touchiregdbject. This condition
has been introduced because we thought it represents aquisite for the ability to
perceptually discriminate the shape of the objects. Howelternative formalisms
which encode different evolutionary selective pressurag work as well.

6 Results

Eight evolutionary simulations, each using a differentd@m initialisation, were run
for 500 generations. Figure 3 shows the fitness of the bestidlugl at each gener-
ation for the best three evolutionary runs. Notice thagrafeneration 300, the best
individuals of all the three runs display optimal or closefimal performance. This
means that these individuals manage to touch the objedtstingtpalm and to distin-
guish ellipsoid from spherical objects located in the twifedent spatial locations and
regardless of the rotation around the z-axis of the ellghsoi

In the next parts of this section, we show the results of twizs®f post-evaluation
tests aimed to estimate the robustness of the best evoltegbceation strategies: (A)
under circumstances in which the effect of favourable cimu linked to the initial
rotation of the ellipsoid are ruled out, and (B) under cirstimces in which the initial
position of the object and of the hand varies. Finally, welyaeathe dynamics of the
robot’s categorization behaviour.

6.1 Robustnesswith respect to theinitial rotation of the ellipsoid

To verify to what extent the robots are able to discriminagéndeen the two type of
objects regardless the initial orientation of the ellipsobject, we tested the evolved



robots with objects placed in all possible initial oriemtas. More precisely in the test
P, the three highest fitness individualg (vith j = 1,2, 3) taken from run n. 2, are
demanded to distinguish for 360 times the two objects placgmbsition A, and for
360 times placed in position B. In each position, an indigidexperiences half of the
times the sphere (i.e., for 180 trials) and half of the tinfes ellipsoid (i.e., for 180
trials). Moreover, trial after trial, the initial rotatioof the ellipsoid around the z-axis
changes of°, from 0° in the first trial to179° in the last trial.

Note that, compared to the evolutionary conditions, in Wwhie individuals is al-
lowed to perceive the ellipsoid only 4 times with 4 differémitial rotations, P; is a
severe test. The results unambiguously tell us whethertdhedhree selected highest
fitness individuals are capable of distinguishing and aaistng the ellipsoid from the
sphere for whatever rotation of the former object aroundztheis. For each selected
individual, testP; is repeated 5 times (i.eR; with i = 1,..,5), with each repetition
differently seeded to guaranteed random variations in tigeradded to sensors read-
ings.

The performance of the individud]; at testP; is quantitatively established by
considering all the responses given byover 3600 trials (i.e., 720 trials per teB},
repeated 5 times, with = 1,2,3, and: = 1,..,5). In each post-evaluation trial, the
response of the individual is based on the firing rates ofored7 and 48 during the
last 4 time steps of each trail In particular, the smallest and the highest firing rates
recorded by both neurons are used to define the bottom leftheenidp right vertices
of a rectangle, as illustrated in Section 5. At the end of @ashP; (i.e., a set of 720
trials), we have 360 rectangles associated to trials in kvthie individual experienced
the sphere (hereafter, rectangls.), and 360 rectangles associated to trials in which
the individual experienced the ellipsoid (hereafter, asgtesRp.). At end of the
five post-evaluation test8;, we build five pairs of non-overlapping minimal bounding
boxes (i.e.(C's; andCp;), a pair for each test as explained in Section 5.

At this point, we take as a quantitative estimate of the rotass of an agent cate-
gorization strategy, the highest numbeiry. andR . rectangles that can be included
in Cg; andCp; respectively, by fulfilling the condition that none of thig;; overlaps
with any of theCp;.

Figure 4(a) and Figure 4(b) visually illustrate this evdiloia process for individual
I. In Figure 4(a), which refers to test, Rs. are the grey continuous line rectangles
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andRp. are the black continuous line rectangles. The grey dasheddictangle i€'s;
and the black dashed line rectangle is €lg;. The Rp. not included in theC'p; are
those rectangles which needed to be excluded in order torttneofC's; overlapping
with any of theC'p,. The five pairs of minimal bounding boxes, that corresportti¢o
performance of; during the five tesP;, can be seen in Figure 4(b). Figure 4(c) and
Figure 4(d) show the five pairs of bounding boxes correspanigi the performance of
I, andI; respectively.

Table 1 shows, for each selected individual and for eachReshe number of
rectangles Rs. and Rp.) for post-evaluated individual/{ with j = 1,2,3), and
for post-evaluation tesP; with ¢+ = 1, .., 5, that can be included it's; andCp; by
fulfilling the condition that none of th€'s; overlaps with any of th€’'p;. The last row
of this Table tells us that the total number of rectanglesfah individual, that can be
included by the minimal bounding boxes without breaking tlea-overlapping rule,
is extremely high. From this, we conclude that the seleatdi/iduals are extremely
good in discriminating and categorising the sphere and ltheseid regardless of the
rotation of the ellipsoid.

Table 1. Number of rectangleRs. + Rpe., for the five post-evaluation tet of the
three individuall;. The total row is the sum of all rectangles for Bl

T I I
Py 717 715 714
P, 719 712 709
Py 716 711 708
Py 717 716 713
P 718 718 713
Tot. | 3587 of 3600| 3572 of 3600| 3557 of 3600

6.2 Robustnesswith respect to theinitial position of the objects

In this section, we show the results of further post-evadumatin which we test the
robustness of individual; in trials in which the initial positions of object and of the
arm change. Note that, an exhaustive analysis on the capadfithe robot to per-
form the categorization task for objects placed at any apptisition reachable by the
hand, it would be computationally expensive due to the lamgaber of arm-objects
positions to test and to the fact that each position of theailgan be reached through
a large number of different postures of the arm. Thereforedecided to limit the
analysis only to those circumstances in which the movemietiteoarm with respect
to the position experienced during evolution are deterchimedisplacements of only
one joint at time. In particular, joinfy, Js, J4, andJg are displaced, one at time, and
by intervals of1°, up to a displacement af30° from the initial positions experienced
during evolution (see Figure 1(c) for details). For eachtj@ind for each° displace-
ment, we repeated tests with i = 1,..,5 above described. For every displacement,
the table and the objects are repositioned to always keepljeet below the palm.

In these tests, a trial with the sphere/ellipsoid is considsuccessful if th&s./Rp.
rectangle falls completely within the region delimited e tminimal bounding box
Cs;/Cp; shown in Figure 4(b). Joinfs, J5, andJ; have not been tested because any
single displacement of just one of these joints, followedbgpositioning of the table
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1 <t < T;and (b)20 < ¢t < T. Black continuous and dashed lines refers to the
average values recorded over sets of 180 trials with thgselld in position A and B,
respectively. Grey continuous and dashed lines referse@¥lrage values recorded
over sets of 180 trials with the sphere in position A and Bpeesively. Filled polygons
around each trajectory are the standard deviations.

and the object, would disrupt the original spatial relasioip (e.g., the palm parallel to
the XY plane and to the table) between the object and the reasldavn in Figure 1(c).

The results of these tests are shown in Figure 5. In thesehgraghich show
the percentage of success per displacement, dark greyddarda tests in which the
displacements are with respect to position A, while ligheygbars refer to tests in
which the displacements are with respect to position B. Wicadhat, in position
A, the strategy off; can tolerate quite well displacements which concern jdint
and those concerningy andJ, up to about an interval af4° in both directions (see
Figure 5a,and 5bdark grey barg).is extremely sensitive with respect to displacement
from position B for all the tested joints (see Figure 5a, 5 &c, light grey bars),
and with respect to displacement from position A for jaipt(see Figure 5c¢, dark grey
bars).

6.3 Analysisof thedynamicsof therobot’s categorization behaviour

Looking at the movies of the performancedofi.e., the best performing individual in
Table 1), we see that this individual starts grasping theatbp the first time steps of
each trial, and then handles it by letting it slowly roll inween the table and the palm
After about 2 s the arm and the hand reach a posture which mereabstantially stable
until the end of the trial. In order to understand how the t&hmategorization outputs
distinguish the two objects we run further analysis. In ipatar, we looked at the
trajectories of the average decision outputs in the twoedisional categorization space
{o(y(t)ar + Baz), o(y(t)as + Bas) }, recorded in tesP;, by distinguishing between the
average values recorded over a set of 180 trials: (i) withetlipsoid in position A
and B (see Figure 6, dark continuous lines, and dark dashed fespectively); and
(i) with the sphere in position A and B (see Figure 6, greytoarous lines and grey
dashed lines respectively). Filled polygons around eaajedtory are the standard
deviations. Figure 6(a) refers to trajectories startirgrfithe first { = 1) and ending
to the last { = 7)) time step. Figure 6(b) refers to trajectories startingrfrite 20"

IMovies of the performances of the best evolved individual$ ather complementary materials can be
found athttp://laral .istc.cnr.it/esn discrimnation.
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(t = 20) and ending to the last (= T) time step. By comparing the two graphs
in Figure 6, we notice thatl; moves in the categorization space by reaching in less
than 0.2 s (from the beginning of the trial) an area in the pnity of the minimal
bounding boxes (see Figure 6(b), dashed rectangles). @tinm large majority of
the arm-object interactions, following the first 0.27g,moves relatively slow in the
categorization space, with the trajectories that tendverde after 3 s. Moreover, we
notice that, as expected, the standard deviation is higinginé trials with the ellipsoid
(see Figure6(b)). This is clearly due to the fact that, &fear trial, the ellipsoid rotates
around the z axis.

The identification of the mechanism which allow the evolvetats to reliably
discriminate between the two type of objects, is a partitylehallenging task given
the complexity of the robot, with many sensors, many actsaad a recurrent non-
linear control structure. Performing this analysis goegobd the objectives of the
paper, and it is left for future work.

7 Conclusions

In this paper, we described an experiment in simulation ircivan anthropomorphic
robotic arm, provided with tactile sensors and propriosensglevelops an ability to
perceptually categorize spherical and ellipsoid objeEte acquisition of such capac-
ity has been realized through an evolutionary method in vtie free parameters of
the robots neural controller have been evolved for thetsitidi produce different cat-
egorization outputs and for touching the object with therpaf the hand. During the
adaptive process the robots are left free to determine hewittteract with the objects
(provided that they keep touching the objects with theinpadnd how they represent
the objects experienced within the two-dimensional caiegtion space correspond-
ing to the output of the two categorization units (provideaktthe areas corresponding
to the two type of objects do not overlap).

The coarse-grained sensory apparatus of the robotic aemehd to control 16
different actuators (which affect the state of 27 DOFs),rtbed to master the effects
arising from the physical interactions between the robdttae environment, and the
small differences between the two objects, make the parabgategorization task par-
ticularly challenging. Nevertheless, the best evolveatshre able to accomplish their
task robustly by displaying close to optimal performanegardless of the orientation
of the objects. The analysis of the best evolved controfiss indicates that they are
able to generalize their ability, within limits, for inilipositions of the objects and of
the arm which have never been experienced during the egnhary phase.

The analysis of the motor behaviour indicates that the exblobots accomplish
their task by actively manipulating the objects for about88l the arm and the hand
of the robot assume a posture that remains substantiabjestiauring the rest of the
trial. The analysis of the categorization process in ewibhabots indicates that they
start to perceptually differentiate the two categoriesadly after about 0.2 s. From this
time on until the end of the trial, the categorization ouspluirther differentiate until
they reach either area€'§ or Cp) of the categorization space.

In future work, we intend to analyze in details the mechasisvhich allow the
robot to discriminate between the two categories of objéntparticular we will anal-
yse whether categorization is accomplished by exploitireg dffects of the interac-
tion between the robot and the environment (mediated by xbewtion of a specific
behaviour) on the posture assumed by the hand and/or by thdaar observed in
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[Nolfi and Marocco, 2002], in a much simpler setup). We wilhkoat the role of the
tactile sensation, and in particular, to what extent it dbaotes to the categorization
process. We will analyse whether categorization is aftkbie how the states of the
sensors change over time or simply by their current statét@what extent the inter-
nal states of the controller affect the way in which the rabanipulate the object.

Moreover, we plan to investigate: (i) how the representatib categories varies
in the categorization space during the training processadrich are the effects of the
dimensionality of the categorization space; (ii) whethgrexiencing a larger variety of
positions/orientations of the objects during the evohaity phase, helps the robots to
develop more robust categories; and (iii) to what extenitioelel scale up to a larger
number of categories and object shapes.
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