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Abstract
The problem of the validity of simulation is particularly relevant for
methodologies that use machine learning techniques to develop control
systems for autonomous robots, like, for instance, the Artificial Life
approach named Evolutionary Robotics. In fact, despite that it has been
demonstrated that training or evolving robots in the real environment is
possible, the number of trials needed to test the system discourage the
use of physical robots during the training period. By evolving neural
controllers for a Khepera robot in computer simulations and then
transferring the obtained agents in the real environment we will show
that: (a) an accurate model of a particular robot-environment dynamics
can be built by sampling the real world through the sensors and the
actuators of the robot; (b) the performance gap between the obtained
behaviors in simulated and real environment may be significantly
reduced by introducing a "conservative" form of noise; (c) if a decrease
in performance is observed when the system is transferred in the real
environment, successful and robust results can be obtained by
continuing the evolutionary process in the real environment for few
generations.

1. Introduction

Artificial Life proposes that we will gain knowledge about life by the study of human-made

systems. Therefore, most Artificial Life experiments are performed by computer models of

some kind of natural system. As a study of artificial life, this leads to interesting new life

forms, while as a study of natural life, it leads to the proposal of new, and the verifications of

old, biological theories. Though, from other scientific communities it has been questioned

whether these life forms and theories are valid when transferred from the simulated



environments to the real environment. This discussion also enters in Artificial Life approach

to robotics, namely Evolutionary Robotics.

Despite most roboticists regularly use simulations to test their models, the validity of

computer simulations to build autonomous robots is very debated. Computer simulations may

be very helpful to train and test robotics models. However, as Brooks [3] pointed out, ".. it is

very hard to simulate the actual dynamics of the real world". This may imply that ".. effort

will go into solving problems that simply do not come up in the real world with a physical

robot .." and that " programs which work well on simulated robots will completely fail on

real robots".

There are several reasons why those who want to use computer models to develop control

systems for real robots may encounter problems:

(a) Numerical simulations do not usually consider all the physical laws of the interaction of

a real agent with its own environment, such as mass, weight, friction, inertia, etc.

(b) Physical sensors deliver uncertain values, and commands to actuators have very

uncertain effects, whereas simulative models often use grid-worlds and sensors which return

perfect information.

(c) Different physical sensors and actuators, even if apparently identical, may perform

differently because of slight differences in the electronics and mechanics or because of their

different positions on the robot. This fact is usually ignored in computer models.

The problem of the validity of simulation is particularly relevant for studies in Evolutionary

Robotics. In fact, despite that it has been demonstrated that training or evolving robots in the

real environment is possible [7, 9], the number of trials needed to train the system discourage

the use of physical robots during the training period. We will examine the problem of

building a simulator in the context of Evolutionary Robotics [3, 4], that is, we will try to

develop control systems for autonomous robots through the use of artificial evolution. In

particular, we will show how the problems described above can be overcomed by carefully

designing the simulator. By evolving neural controllers for a Khepera robot in simulation and

then transferring the obtained control system to the physical environment we will show that:



(a) an accurate model of a particular robot-environment dynamics can be obtained by

sampling the real world through the sensors and the actuators of the robot; (b) the

performance gap between obtained behaviors in the simulated and real environment may be

significantly reduced by introducing a "conservative" form of noise; (c) if a decrease in

performance is observed when the system is transferred to the real environment, successful

and robust results can be obtained by continuing the evolutionary process in the real

environment for few generations.

2. Related Work

Recently, some researchers have investigated the problem of transferring control systems of

autonomous robot agents from simulation to reality in the context of the Evolutionary

Robotics approach. Miglino, Nafasi, and Taylor [14] describe a mobile Lego robot controlled

by an artificial neural network that should explore an open arena. The network was trained in

simulation by using an evolutionary technique and then transferred in the real robot. In this

work the authors showed, that the addition of noise to the sensors in the simulated

environment may reduce the discrepancy between the simulated and the embodied

conditions. The authors also showed that there is an optimal amount of noise to use and that

such optimal value can be computed by comparing performances in simulated and embodied

conditions.

Nolfi, Miglino, and Parisi (described in [16]) presented some experiments with the

miniature mobile robot called Khepera (see below) that performed an obstacle avoidance

task. The authors developed a simulator based on empirical sampled sensor readings and

claimed that this sampling procedure can reduce the performance gap between the embodied

and un-embodied conditions. By using an evolutionary technique, the authors also showed

that the degradation in performance after the transfer of the system from the simulated to the

embodied condition can be easily recovered by continuing the evolutionary process in the

real environment for few generations. Recently, Nolfi and Parisi [20] showed how this

approach can be generalized to a more complex task in which a Khepera with an arm and a



gripper evolves an ability to recognize and pick-up small round objects while avoiding walls.

The control systems evolved in simulation resulted able to accomplish the task also once

transferred to the real environment.

Jakobi, Husbands and Harvey [10] also described some experiments with Khepera

performing an obstacle avoidance and a light-approaching tasks. As was previously

demonstrated by Miglino, Nafasi and Taylor [14], the authors found that noise may reduce

the discrepancy between the simulated and the embodied condition. The authors also claim

that by adding the optimal amount of noise, almost identical behaviors are observed in the

two conditions.

Several other authors have described experiences of successful transfer of systems evolved

in simulation in the real environment. For example, Yamauchi and Beer [21] describe an

experiment in which dynamical neural networks were evolved in simulation to solve a

landmark recognition task using a sonar. Such networks were then tested on a Nomad 200

robot with a built in wall-following behavior.

3. The Experimental Setup

3.1 The robot and the environment

In our experiments we used Khepera (see figure 1), a miniature mobile robot developed at

E.P.F.L. in Lausanne [16]. Khepera has a circular shape with a diameter of 55 mm., a height

of 30 mm., and a weight of 70g.; it is supported by two wheels and two small teflon balls.

The wheels are driven by extremely accurate stepper motors under P.I.D. control and can

move both forward or backward. The robot is provided with eight infra-red proximity

sensors. Six sensors are positioned on the front of the robot, the remaining two on the back.

A Motorola 68331 controller with 256 Kbytes RAM and 512 Kbytes ROM manages all the

input-output routines and can communicate via a serial port with a host computer. Khepera

was attached to a host computer by means of a lightweight aerial cable and specially designed

rotating contacts. This configuration allowed a full track and record of all important variables

by exploiting the storage capabilities of the host computer; at the same time it provided



electrical power without using time-consuming homing algorithms or large heavy-duty

batteries.

Figure 1. The Khepera robot.

The environment of the robot were a rectangular arena 60 x 35 cm surrounded by walls

with 3 round obstacles of 5.5 cm placed in the center (see Figure 2). Walls and obstacles

were covered with white paper.

Figure 2. The environment used in the experiments.

Khepera should perform an obstacle avoidance behavior moving forward as fast as possible,

moving in as straight a line as possible and keeping as far away from objects as possible. In

order to evaluate individual performance we used the following formula:
          500

F = ∑  Vi (1 - DVi2) (1 - Ii) (1)
             i=1

where Vi is the average rotation speed of the two wheels, DVi is the algebraic difference

between signed speed values of the wheels, and Ii is the activation values of the proximity

sensor with the highest activity at time i. For experiments with Khepera which used a similar

environment and the same formula to score individuals see [7, 10,17] ( however, in [10] the

authors used a simplified version of the formula taking into account only the first 2 terms).

Each individual was evaluated for 500 cycles, of 100 ms. each, starting from a different



random generated position in the environment. Thus, individual performance (F) was

calculated by summing the value resulted from the formula above each cycle for 500 times.

3.2 Simulating the robot and the environment

As was argued in the introduction, there are several facts that must be taken into account

when designing a simulative model of a robot and of its environment. The robot and the

environment should be accurately reproduced in the software model and any kind of

information that is not available to the real robot can not be provided to the simulated agent.

From the sensory point of view, one should consider (a) that sensors deliver uncertain

responses and (b) that different physical sensors, even if apparently identical, may perform

differently because of slight differences in the electronics and mechanics or because of their

different positions in the robot. Finally, from the actuators point of view one should consider

(a) the physical aspects of the interaction between the robot and the environment (such as

mass, friction, inertia, etc.) (b) the fact that values and commands to actuators often have

very uncertain effects (c) the fact that different physical actuators, even if apparently

identical, may perform differently.

3.2.1 Simulating Khepera's Infra Red Sensors

By inspecting the infra-red sensors of two different Khepera we found that, as expected, the

responses of the sensors vary because of slight differences in the environment (e.g. ambient

light settings, colour, and shape of the objects) and other unpredictable causes (noise).

However, one of the most important factors affecting the variation of the response of sensors

appeared to be the intrinsic properties of the particular sensor. In other words, each sensor

responds in a significantly different way from other sensors when exsposed to the same

external stimulus (see Figure 3). Compare for instance the 5th and 6th sensors in Figure 3.

These two sensors, which are placed close together in the right side of Khepera, act in totally

different ways: the 6th sensor is sensitive within angle and distance ranges that are both

nearly twice as large as those of the 5th sensor. This also implies, as we actually found, that



two different Khepera may perform very differently from each other in identical conditions

because of the differences in the sensory characteristics.
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Figure 3. Sensors activation of an individual Khepera at different orientations and distances with respect to a
wall.



In order to take into account the idiosyncrasies of each sensor we decided to empirically

sample the different classes of objects in the environment (walls and obstacles) through

Khepera real sensors. We let Khepera turn 360 degrees at different distances with respect to a

wall and to an obstacle, while, in the meantime, recording the activation level of the sensors.

More precisely, the activation level of each of the eight infra-red sensors was recorded for

180 orientations and for 20 different distances (the result of such sampling procedures in the

case of a wall is shown in Figure 3). The resulting matrices were then used by the simulator

to set the activation levels of the simulated agent depending on its current position in the

simulated environment.

This procedure has several advantages: it is simple and accounts for the idiosyncrasies of

each individual sensor. It allows to build a model of an individual robot taking into account

the specificities of that robot that make it different from others apparently identical

exemplars. It also accounts for the idiosyncrasies of the environment by empirically

modelling the environment itself, instead of building a mathematical model of it. However, it

must be noted that modelling more complex environment with this methodology may result

significantly more expensive because each different class of objects should be sampled and

because non-symmetrical objects may require different sampling for different points of view.

To illustrate this last point see Figure 4. Uniform round objects are perceived in the same

way independently from the point of view and thus require to be sampled once, while

rectangular objects are perceived differently from different points of view and thus require

multiple samplings.

Figure 4. The perception of the symmetrical objects varies as a function of the agent orientation and distance
but not of the point of view while perception of non-symmetrical objects varies also as a function of the point
of view.



Finally, it should be noted that perception of multiple objects at the same time should be

modelled in some way, too. In these cases, we calculated the activation of sensors by

summing the measured activation produced by different objects but, of course, it is possible

that in the physical environments combinations of different objects may produce slightly

different effects.

To account for the fact that objects of the same types may be perceived differently because

of variation in the ambient light or because of slight differences in the objects themselves we

introduced, in a set of experiments, a special form of noise that we call "conservative position

noise". This noise makes the simulated agent perceive objects as if they were farther or closer

(with respect to a random selected axis) than what they really are, thus producing "illusions"

similar to those arising in the physical environment because of differences in the illumination

of objects, shadows, or because of slight physical differences between objects of the same

type. This noise was implemented with two values that represent the current distortion on the

x and y axes which are initially randomly assigned between a given range. A small random

value was algebraically summed to current distortion values each time step in order to

progressively change the type and the amount of the distortion of the perceived objects

during a robot's life. It is important to notice that the robot is not moved from its position, but

rather it senses the world as if it would have moved.

In other experiments, we used an alternative technique. To take into account the fact that

sensors deliver uncertain responses we applied noise to the simulated sensors by adding a

random selected value between a given range to the activation level of each simulated sensor.

The effect of these two forms of noise will be described in the following section.

3.2.2 Simulating Khepera's Motors

Khepera has a very accurate motor apparatus because the PID control algorithm built-in in

the robot, which assures that the actual speed never varies significantly from the set speed

and because friction and inertia have very limited effects given the lightness of the robot.

This characteristics makes it easy to build a simulated model of Khepera's motors accurate



enough. However, it should be considered, that in the case of other robots the situation may

be quantitatively very different.

In order to model Khepera's motors, once again, we proceeded experimentally by sampling

the effect of the different motors setting in the real environment. More specifically, we

sampled how the individual Khepera that we were modelling moved and turned for each of

the 20*20 possible states of the two motors. The obtained measures were used by the

simulator to set the activation level of the neural network input units, and to compute the

displacement of the robot in the simulated environment. This methodology allows to account

for most of the problems described in section 3.2. To account for the fact that actuators may

produce, in any case, unpredictable uncertain effects and that the ground may present

irregularities, noise can be applied in the simulated environment to the movements of the

simulated agent.

A similar approach is described in [10]. By using the speed sensors of Khepera and letting it

move in the real environment, the authors empirically calculated the value of three constants

of the formula used to determine the movements of the robot in the simulated environment.

Further, they used a similar procedure, that however did not take into account the differences

between each sensor, to model Khepera infra-red sensors.

3.3 The control system

To implement the control system we decided to use a neural network. Although within the

Evolutionary Robotics community there are examples of controllers for autonomous robots

implemented with explicit programs written in a high-level language [2, 12] or with a form

of classifier systems [6], many researchers decided to use neural networks [4, 7, 14, 17, 21].

The capability of a neural network to deal with noise and the possibility to coniugate

traditional neural learning algorithms (at individuals level) with genetic algorithms (at

population level) are some of the reasons that makes neural networks attractive [4, 7, 17]. We

used a feed-forward neural network with eight input units (clamped to the infra-red sensors),

and two output units directly connected to the motors (see Figure 5).



Figure 5. The neural network used to control the robot.

3.4 The evolutionary process

To evolve neural controllers able to perform the task described above we used a form of

genetic algorithm. We begin with 100 randomly generated genotypes each representing a

network with a different set of connection weights assigned randomly. This is Generation 0

(G0). G0 networks are allowed to perform 500 actions (about 2 seconds in the simulated

environment using an IBM RISK/6000 computer or about 50 seconds in the real

environment). The robot's initial position was randomly assigned. At the end of their "life"

robots have the possibility to reproduce. However, only the 20 best performing individuals

reproduce (agamically) by generating 5 copies of their neural networks. These 20x5=100 new

neural control systems constitute the next generation (G1). Random mutations (25%) are

introduced in the copying process resulting in possible changes of the connection weights.

The process is repeated for 200 generations in the simulated environment and then is

continued for other 20 generation in the real environment.

The genetic encoding scheme was a direct one-to-one mapping. The encoding scheme is the

way in which the phenotype (in this case the connection weights of the neural network) is

encoded in the genotype (the representation on which the genetic algorithm operates). The

one-to-one mapping is the simplest encoding scheme in which to each phenotypical character

corresponds one and only one 'gene'. In our case to each connection weights corresponds a

floating point number. The genotype of each individual thus consists of 18 floating point

value representing the 16 weights and the 2 biases of the neural network. (For more complex

encoding schemes that also allow the evolution of the neural topology, see [9, 19]).



4. Results

In order to test the correspondence of performances and behaviors in simulated and in real

environment and the role of the different forms of noise discussed above, we ran three sets of

experiments. In a first set of experiments (no-noise condition) we did not apply any form of

noise in the simulated environment. In a second set of experiments (noise condition) we

applied a standard form of noise to the sensory activation of the robot by adding a random

number in the range 0.0 to 0.4 (sensory activation varies between 0.0 and 1.0). Through

empirical testings among 5 different noise ranges, the 0.0 to 0.4 range was found to give the

best performance and less dependency on initial random seeds, so this range was chosen. In a

third set of experiments we applied to the sensors the conservative form of noise described in

section 3.2.1. (conservative noise condition). In this last case, we set the sensory activation of

the robot as if it was translated on the Cartesian axes of x and y coordinates in the range

between -30 and 30 mm. The choice of this range was, like the choice of noise range, due to

empirical testings of different conservative noise ranges where the -30 to 30 mm. range

produced the best performances and less dependency on initial random seeds.

For each of the three conditions (no-noise, noise, and conservative noise) we ran 5

experiments with different random assignments of the initial weights. The average and peak

performances (i.e. the average performance of the population and the performances of the

best 20 individuals of the population) through out generations are shown in Figures 6, 7, and

8 respectively.
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Figure 6. Peak and Average performances through out generations in the no-noise condition. Average result
of 5 experiments. The first 200 generations are evolved in the simulated environment, the last 20 generations
in the real environment.
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Figure 7. Peak and Average performances through out generations in the noise condition. Average results of
5 experiments. The first 200 generations are evolved in the simulated environment, the last 20 generations in
the real environment.

 
generation

fit
ne

ss

0

50

100

150

200

250

300

350

1 5
1

1
0

1

1
5

1

2
0

1

Figure 8. Peak and Average performances through out generations in the conservative noise condition.
Average results of 5 experiments. The first 200 generations are evolved in the simulated environment, the last
20 generations in the real environment.

As can be seen, in all conditions performances increase quickly and the decrease in

performances after the transfer in the real environment is limited if we look at the peak

performances (i.e. the upper curves in each of the three conditions). This means that the gap

between the simulated and the real condition is very limited in all cases. It is also interesting

to note that such a gap can be reduced by adding noise in the simulated environment. In the

noise condition the decrease in the peak performance is reduced (even if, on the contrary,

average performance decreases more with respect to the no-noise condition). Individuals in

the conservative noise condition reach a bit lower fitness score in the simulated environment

with respect to the two other cases with either no noise or sensor noise. Yet, when transferred

from the simulated to the real environment at generation 200, individuals treated with

conservative noise perform quantitatively better than individuals evolved in the no-noise or

noise condition.



Individuals of the no-noise condition rapidly recover the performance loss when transferred

to the real environment, while individuals of the noise condition are able to recover only

from the peak performance point of view. Individuals of the conservative noise condition do

not need to recover at all. Despite of that, they are able to adapt better to the new

environment as it is shown by the increase in performances.

To study the statistical significance of the obtained results we made a two factors ANOVA

to compare, for each of the three conditions, the performances of the 500 individuals of

generation 200 in the simulated environment and in the real environment. The analysis

revealed that statistically significant different performances are obtained in the first two

conditions but not in the last one (see Table 1). This means that performances of evolved

individuals in the conservative noise condition do not significantly differ in the simulated and

in the real environment.

degrees of freedom ratio of Fisher interval of

confidence

Remarks

no noise 1, 998 164.14 .01 significant effect

sensor noise 1, 998 549.79 .01 significant effect

conservative noise 1, 998 0.74 .01 no significant effect

Table 1. Results of two factors analysis of variance, for each experimental condition, between performances
of individuals at generation 200 in the simulated and in the real environment.

We also compared, for each of the three conditions, the performance in the real

environment of the 500 individuals of generation 200 with performance of individuals of

generation 219 (i.e. individual that was trained also in the real environment). The analysis

revealed a statistically significant effect in all of the three cases (see Table 2). This means

that in all cases, performances increase significantly by continuing the evolutionary process

in the real environment.

degrees of freedom ratio of Fisher interval of

confidence

Remarks

no noise 1, 998 74.09 .01 significant effect

sensor noise 1, 998 30.74 .01 significant effect

conservative noise 1, 998 26.01 .01 significant effect

Table 2. Results of two factors analysis of variance, for each experimental condition, between performances
obtained in the real environment at generation 200 (at beginning of evolution in the real environment) and at
generation 219.



All the analyses described above concern performances (fitness scores). In order to verify

what happens at the level of behaviors, we compared the trajectories of the best individuals

of generation 200 (i.e. individuals evolved in the simulated environment) in the simulated

and in the real environment. For each experiment, we tested the best individual by placing it

in the same position in the simulated and in the real environment and then let it move for 500

steps. Figures 9, 10, and 11 show, for each of the three conditions and for each of the five

experiments, the trajectories observed in the two environments.
(a)

(b)

(c)

(d)

(e)

Figure 9. Trajectories of the best individuals of generation 200 of the five no-noise experiments in the
simulated (dashed line) and real (full line) environment.



(a)

(b)

(c)

(d)

(e)

Figure 10. Trajectories of the best individuals of generation 200 of the five noise experiments in the
simulated (dashed line) and real (full line) environment.



(a)

(b)

(c)

(d)

(e)

Figure 11. Trajectories of the best individuals of generation 200 of the five conservative noise experiments
in the simulated (dashed line) and real (full line) environment.

As could be expected from the analysis of the performances, individuals evolved in the

conservative noise condition are the ones which perform more similarly in the simulated and

in the real environments. Trajectories match almost perfectly for individuals evolved in the

conservative noise condition (see Figure 11) while in the other two conditions in some cases

the trajectories are very different (see Figures 9 and 10). What happens is that individuals of

the no-noise condition, when transferred to the real environment, often turn too much (more



than 90o) in the corners and get stuck there (cf., Figures 10, a, b, c, e). In the noise condition

instead robots move slower in the real environment with respect to the simulated one, and

sometimes even hit into obstacles. Robots trained in the conservative-noise condition do not

show any significant discrepancies in the two environments except in case d in which the

robot moves a bit slower in the real environment.

To obtain a quantitative measure of the discrepancy of behaviors we calculated the

Euclidean distance between the coordinates of the robot in the two environments each 5 steps

so that by summing the discrepancies obtained each time step we can have a measure of

divergence between two trajectories, D#steps :

  #steps
D#steps = ∑  √((yrj - ysj)2 + (xrj - xsj)2) (2)

    i=1

where (xrj,yrj) and (xsj,ysj) are the positions of the real and simulated robot, respectively,

at step j. Figure 12 shows the result of this analysis. As can be seen conservative noise

appears to reduce very significantly the discrepancy between behaviors in simulated and real

environments.
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Figure 12. Discrepancy of behaviors in the simulated and real environment for each of the three conditions.



5. Conclusions

We have investigated the validity of computer simulations to develop control systems for

autonomous mobile robots. By evolving neural controllers for a Khepera robot in computer

simulation and then transferring the obtained control systems to the physical environment, we

showed that it is possible to design an accurate enough model of a mobile robot and of its

environment.

We claimed that, to accurately simulate a robot, it is very important: (a) to take into account

the fact that identical physical sensors and actuators may perform very differently, (b) to

account in some way for noise and for other characteristics of the robot and of the

environment not included in the simulator (ambient light, slight differences in colour and

shape of the objects, etc.). As we showed, problem (a) can be solved by sampling the real

world through the sensors and the actuators of the robot. This method, in fact, allows to build

a model of a physical individual robot that take into account the differences between robots

of the same type and between different identical components of the same robot. The second

problem (b) can be faced instead by introducing in the simulator different forms of noise. A

conservative form of noise can be used to emulate the characteristics of the robot and of the

environment that have not been included in the simulated model and that may produce

unpredictable but regular form of distortion between the real and the simulated (and certainly

simplified) environment. A standard form of noise can be used to account for the intrinsic

noise present in the real environment due to unpredictable causes and to the fact that sensors

and actuators return uncertain values.

Our simulative results supported this hypothesis. By comparing performances and behaviors

in simulated and real environment we showed that similar results are obtained even without

the addition of noise (see Figures 6 and 9). Moreover, we showed that adding noise to the

simulated sensors can reduce the gap between simulated and real environment (see Figures 7,

10, and 12). Further, we showed that a regular form of noise (what we called "conservative

noise") resulted even more powerful in reducing the gap between simulation and reality (see

Figures 8, 11, and 12). In fact, performances of individuals evolved in simulation in



conservative noise condition do not significantly differ in the simulated and in the real

environment (see Table 1).

Finally we showed that if a decrease in performance is observed when the system is

transferred to the real environment, successful and robust results can be obtained by

continuing the evolutionary process in the real environment for few generations. (see Figures

6, 7 and 8). As was showed in Table 2, in all described experiments performances increased

significantly by continuing the evolutionary process in the real environment. This result is

important because it implies that simulation can be considered a useful tool even if the gap

between simulation and reality cannot be completely eliminated. It is not necessary that

behaviors in the two environment maps exactly, because by continuing the training process in

the real environment perfectly adapted individuals can be obtained.

A general problem of Evolutionary Robotics, that we have avoided to discuss so far, is how

to specify an appropriate fitness criterion for a given task. This problem also enters in our

experiments with the simulated/physical approach. The fitness criterion for the obstacle-

avoidance task (formula 1) seems very obvious with one component for maximizing speed, a

second for movement in a straight direction, and a third for the avoidance of obstacles. Yet,

this fitness criterion may lead to some deceptive solutions. Look for instance at Figure 11 d.

The shown behaviors in both simulated and the real environment seem to be very bad, and

they do certainly not fulfill the task. Yet, such behaviors will score relatively high on the

fitness measure, since the strategy is to move very fast forward and backward without turning

much. The use of the simulated/physical approach to Evolutionary Robotics might make it

more easy to overcome such deceptive problems, since it is possible to add special fitness

components to the fitness criterion in the simulator, which would not be possible to do in the

real environment, as for instance counting number of cells passed by the robot (cf. [14]).

Evolutionary Robotics is an appealing idea arised from the Artificial Life community, but it

needs much experimental investigations. This work is a contribute to produce quantitative

data and empirical techniques that can be used or criticized by other researchers. We used an

obstacle-avoidance navigation task to show the proposed standard techniques uselfulness in



the simulated/physical approach regime. When standards have been reached more complex

tasks can be investigated. We have here tried to outline some first passes toward such.

Comparing the Khepera robot sensors different responses to a physical input, it was clear that

it is extremely hard to construct a detailed mathematical model of robot/environment

interactions. Therefore, we developed the methodology for building efficient simulators of

robots/enviroment interaction dynamics by letting the robot itself capture the significant

physical features of itself and the "world" in which it acts. We think that this

simulated/physical approach is the correct methodology for Evolutionary Robotics.

According this point of view, the main problem consists to reduce the gap between

performances observed in simulated environment and performances obtained in the real

enviroment. From an engineering perspective, we have to observe the same behaviors in both

enviroments. From a more biologically plausible point of view, as that of Evolutionary

Robotics, the problem is how to produce artificial genotypes to adapt to different

environments (e.g. simulated and real environments). In this perspective, Evolutionary

Robotics intersects other interesting research fields in Artificial Life such as phenotypic

plasticity [5, 11, 19], pre-adaptations [13, 15] ontogenetic and phylogenetic evolution [1, 19].

In order to understand these phenomena more thoroughly, Evolutionary Robotics might come

to play a crucial role in future when standards for the field have been obtained. Such

standards will allow more complex experiments to be performed and more complex

processes to be understood.

Acknowledgement

The authors would like to thank Domenico Parisi, C.N.R. for useful suggestions and

discussions.

References

1. Belew, R. & Mitchel, M. (Eds.) (1995). Plastic Individual in Evolving Populations. SFI

series, Addison-Wesley.



2. Brooks, R. A (1986). A robust layered control system for a mobile robot. IEEE Journal

of Robotics and Automation, RA-2 (1).

3. Brooks, R. A. (1992). Artificial life and real robots. In F. J. Varela, P. Bourgine (Eds.),

Toward a Practice of Autonomous  Systems: Proceedings of the First European Conference

on Artificial Life. Cambridge, MA: MIT Press/Bradford Books.

4. Cliff, D. T., Harvey, I., & Husbands, P. (1993). Explorations in Evolutionary Robotics.

Adaptive Behavior, 2, 73-110.

5. Dellaert, F & Beer, R. D. (1994). Toward an evolvable model of development for

autonomous agent synthesis.  In R. Brooks and P. Maes (Eds.) Proceedings of fourth

International Conference on Artificial Life. Cambridge, MA: MIT Press

6. Dorigo, M., & Schnepf, U. (1993). Genetis-based machine learning and behavior based

robotics: a new synthesis. IEEE Transaction on Systems, Man and Cybernetics, 23,141,153.

7. Floreano D., Mondada, F. (1994). Automatic Creation of an Autonomous Agent: Genetic

Evolution of a Neural-Network Driven Robot. In D. Cliff, P. Husbands, J. Meyer, S. W.

Wilson (Eds.) From Animals to Animats 3: Proceedings of Third Conference on Simulation

of Adaptive Behavior.  Cambridge, MA:  MIT Press/Bradford Books.

8. Harvey, I. (1992). Species adaptations algorithms: A basis for a continuing SAGA. In F.

Varela, P. Bourgine (Eds.) Toward a practice of autonomous  systems: Proceedings of the

First European Conference on Artificial Life (ECAL91). Cambridge, Ma: MIT

Press/Bradford Books.



9. Harvey, I., Husbands, P., & Cliff., D. (1994). Seeing the light: Artificial evolution, real

vision. In D. Cliff, P. Husband, J-A Meyer, and S. Wilson (Eds.), From Animals to Animats

3, Proceedings of 3rd International Conference on Simulation of Adaptive Behavior.

Cambridge, Ma: MIT Press/Bradford Books.

10. Jakobi, N., Husbands, P., & Harvey, I. (in press). Noise and The Reality Gap: The Use

of Simulation in Evolutionary Robotics. To appear in Proceedings of Third European

Conference on Artificial Life (ECAL'95). Springer-Verlag.

11. Kodjabachian, J. & Meyer, J. A. (1994). Development, Learning and Evolution in

Animats. In: D. P. Gaussier and J-D. Nicoud (Eds.) Proceedings of the Intl. Conf. From

Perception to Action, Los Alamitos, CA: IEEE Press.

12. Koza J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable

Programs. Cambridge MA: MIT Press/Bradford Books.

13. Lund H. H., D. Parisi. (in press). Pre-adaptations in Populations of Neural Networks

Living in a Changing Environment. To appear in Artificial Life.

14. Miglino O., Nafasi, K., & Taylor, C. (1994). Selection for Wandering Behavior in a

Small Robot. Technical Report. UCLA-CRSP-94-01. Department of Cognitive Science,

University of California, Los Angeles. To appear in Artificial Life.

15. Miglino, O., Nolfi S. & Parisi, D. (1995). Discontinuity in evolution: how different

levels of organization imply pre-adaptation. In Belew, R. & Mitchel, M. (Eds.) Plastic

Individual in Evolving Populations. SFI series, Addison-Wesley.



16. Mondada F., Franzi, E., & Ienne, P. (1993). Mobile Robot miniaturisation: A tool for

investigation in control algorithms. In: Proceedings of the third International Symposium on

Experimental Robotics, Kyoto, Japan.

17. Nolfi, S., Floreano, D., Miglino, O., & Mondada, F. (1994). How to evolve autonomuos

robots: different approaches in evolutionary robotics. In R. Brooks and P. Maes (Eds.)

Proceedings of fourth International Conference on Artificial Life. Cambridge, MA. MIT

Press

18. Nolfi, S., Miglino, O., & Parisi, D. (1994). Phenotypic Plasticity in Evolving Neural

Networks. In: D. P. Gaussier and J-D. Nicoud (Eds.) Proceedings of the Intl. Conf. From

Perception to Action. Los Alamitos, CA: IEEE Press

19. Nolfi, S., & Parisi, D., (1993). Phylogenetic Recapitulation in the Ontogeny of

Artificial Neural Networks. Technical Report 93-01, Institute of Psychology, C.N.R., Rome.

20. Nolfi, S., & Parisi, D. (1995). Evolving non-trivial behaviors on real robots: An

autonomous robot that pick up objects. Technical Report 95-03, Institute of Psychology,

C.N.R., Rome.

21. Yamauchi B., & Beer, R. (1994). Integrating reactive, sequential, and learning behavior

using dinamical neural networks. In D. Cliff, P. Husband, J-A Meyer, and S. Wilson (Eds.),

From Animals to Animats 3, Proceedings of third International Conference on Simulation of

Adaptive Behavior. Cambridge, MA: MIT Press/Bradford Books.

The corrispondonce should be addressed to:  Orazio Miglino
Institute of Psychology, National Research Council
Viale Marx 15
00137 Rome, Italy.
e-mail: orazio@caio.irmkant.rm.cnr.it
voice: 0039-6-86090227
fax: 0039-6-824737


