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Abstract 

We simulated organisms with an arm terminating with a hand 
composed by two fingers, a thumb and an index, each 
composed by two segments, whose behavior was guided by a 
nervous system simulated through an artificial network. The 
organisms, which evolved through a genetic algorithm, lived in 
a bidimensional environment containing four objects, either 
large or small, either grey or black. In a baseline simulation the 
organisms had to learn to grasp small objects with a precision 
grip and large objects with a power grip. In Simulation 1 the 
organisms learned to perform two tasks: in Task 1 they 
continued to grasp objects according to their size, in Task 2 
they had to decide the objects' color by using a precision or a 
power grip. Learning occured earlier when the grip required to 
respond to the object and to decide the color was the same than 
when it was not, even if object size was irrelevant to the task. 
The simulation replicates the result of an experiment by Tucker 
& Ellis (2001) suggesting that seeing objects automatically 
activates motor information on how to grasp them. 

Introduction 
In opposition to theories that posit perception and action as 
separate (Pylyshyn, 1999), it has recently been suggested that 
perception and action are strictly interwoven and that 
perception is guided and filtered by action (Berthoz, 1997; 
Ward, 2002). In a related way, recent theories emphasize the 
interconnections between sensorimotor and cognitive 
processes. In particular, it has been proposed that cognition is 
embodied, i.e., that it depends on the experiences that result 
from possessing a body with given physical characteristics 
and a particular sensorimotor system (Barsalou, 1999; 
Glenberg, 1997; Goldstone & Barsalou, 1998). This view of 
cognition is clearly in opposition to the classical cognitivist 
view according to which mind is a device for manipulating 
arbitrary symbols.  

More specifically, some theories suggest that object 
concepts re-enhance sensorimotor experiences with objects 
(Barsalou, 1999; Glenberg, 1997; Pecher & Zwaan, 2005). 
Studies on the relationships between the visual system and the 
motor system claim that seeing an object tends to evoke its 
affordances, re-activating previous experiences and 
interactions with the object. An affordance refers to a 

property on an object that influences how the object can be 
used (Gibson, 1979). For example, the properties of the 
handle of a door determine how one opens the door - by 
pulling, or pushing, or twisting, and so on.  Accordingly, 
seeing an object such as a cup may re-activate the affordances 
linked to reaching and grasping the cup’s handle, even if the 
position of the handle is not relevant to the task at hand 
(Tucker & Ellis, 1998).  

Most evidence regarding the strict interrelations between 
perception and action concerns simple interactions with 
objects, rather than complex actions probably mediated by the 
actor's goals. So, for example, protruding object parts may 
activate reaching motor behaviors, whereas objects of a 
specific size may activate specific grasping behaviors. In 
order to refer to these “low-level” affordances, Ellis & Tucker 
(2000) created the expression of “micro-affordances”. Micro-
affordances facilitate simple and specific kinds of interactions 
with objects but they do not pertain complex, goal-mediated 
actions. Most importantly, micro-affordances probably imply 
access to conceptual knowledge, as they are rather specific 
and suitable for a given object. So, for example, seeing an 
object does not elicit simply a grasping behavior, but a 
specific type of grasping behavior which is suitable for that 
particular object.  

Ellis & Tucker (2000) and Tucker & Ellis (2001) have 
demonstrated the role played by affordances in eliciting 
motor behavior by presenting participants with real objects of 
different sizes. Participants had to categorize the objects as 
natural or artefact using either a power grip or a precision 
grip. They found a compatibility effect between the kind of 
grasp and a task-irrelevant dimension, the object`s size. The 
effect was also observed when the object was located outside 
the reaching space, which suggests that seeing the object 
activates the simulation of a specific type of grasping. A 
similar compatibility effect was found between the direction 
of the wrist’s rotation and the kind of grasp required by the 
object. For example, objects such as bottles facilitated 
responses with a clockwise wrist rotation, while objects such 
as toothbrushes facilitated a counter-clockwise wrist rotation.  



Aim of the paper 
Aim of the present paper is to reproduce with an Artificial 
Life connectionist simulation the situation explored by T&E. 
A typical feature of Artificial Life connectionist simulations 
is that the experimenter can control how organisms learn to 
perform a given task but he or she doesn’t pre-define the 
single learning steps and the organisms find their own way to 
solve the problem. In our case, we first taught the organism to 
grasp small and large objects using two different types of 
grip, trying to reproduce in this way real life experiences in 
interacting with objects. Then we reproduced Tucker & 
Ellis’s (2001) experiment  with some minor variations.  

Our aim was to assess whether previous grasping 
experiences with objects of different size influenced the 
organism’s performance when the object’s size was irrelevant 
to the task at hand, i.e., in a task in which the organisms had 
to perform a different kind of grip depending on the color of 
the object they were seeing.  

Connectionist simulations not only make it possible to 
replicate behavioral tasks but they also allow us to analyze the 
activation patterns of the neural network’s hidden units, i.e., 
the neural organization that the network acquires to solve the 
problem. This may seem odd, as the artificial networks used 
in the simulations are enormously simplified compared to real 
brains, and the analysis of hidden units’ activations may seem 
an impoverished replication of brain scanning techniques. 
However, connectionist simulations allow us to analyze the 
hidden units organization at different learning stages, which 
brain scanning and other techniques can’t easily do.  

The model 
In our study we simulated artificial organisms endowed with 
a visual system and a motor system. The visual system allows 
the organisms to see different objects, one at a time. The 
motor system consists of a single arm composed by two 
segments; by moving the arm different points of space can be 
reached with the arm’s endpoint (the hand) (see Figure 1). 
The arm sends proprioceptive information to the organisms 
that specifies the arm's current position. The arm terminates 
with a hand composed by only two fingers, each in turn 
composed by two segments. One of the finger, the thumb, is 
shorter than the other one, the index finger. With their hand 
the organisms can perform all kinds of grips. In our 
simulation we were interested in two different kinds of grips. 
The precision grip was defined by the opposition between the 
thumb and the index which are spatially close to each other. 
The power grip was defined by the fact that it is a kind of grip 
suitable for larger objects, i.e., the distance between the finger 
and the thumb is much larger than for the precision grip. 
Consider that the index finger can be conceived of as a 
“virtual finger”. Namely, when we grasp objects, we use all 
the fingers except the thumb as a single functional unit, 
applying force to the object (Arbib, 2002). Thus our index 
finger does not model only the index movements but the 
movements of the whole hand (except the thumb). The 
fingers also send proprioceptive information to the organisms, 
which therefore are “aware” both of the arm and the finger 

positions. Consider that our organisms receives both 
proprioceptive and visual information, but are unable to see 
their hand moving in space and to detect visually how they 
are grasping the object.  

 
 
Figure 1:  The arm and the hand of the organism and how 
sensory-motor information is encoded in the organism’s 

neural network. 
 
The behavior of the organisms is controlled by a nervous 

system, which is simulated with a neural network (see Figure 
1 and Figure 2). The network architecture consists of 3 layers: 
one input layer with 3 different groups of units, one 
intermediate layer of 4 hidden units, and one output layer of 5 
units.  

 

 
Figure 2:  The neural network architecture. 

 
In the input layer there are 3 groups of neurons. The first 

group, composed by 15 units, encodes the perceptual 
properties of the objects that the organism “sees”. The input 
value can vary within a range from 0 to 1. As shown in Figure 
1, a large object corresponds to 9 filled cells in a matrix of 15 
cells, whereas a small object corresponds to 1 filled cell in the 
same matrix of 15 cells. Grey objects are encoded with a 0.5 
activation value; black objects with a 1.0 value. A second 
group of 2 input units encodes information specifying the task 
the organism is required to perform, and a third group of 5 
units encodes proprioceptive information. Two proprioceptive 
input units encode the current angles between the shoulder 
and the arm and between the arm and the forearm, while the 
remaining 3 units encode the 3 angles of the fingers (2 angles 
between the fingers' falangi and another one between the 2 
fingers). 



The 5 output units encode the movements of the organism’s 
hand and fingers, by specifying the variation of the previously 
described angles. As shown in Figure 2, the visual input units 
and the task units are connected with the hidden units, while 
the proprioceptive input units are directly connected with the 
output units.  

On each trial the organism sees a single object. There are 4 
different objects: 2 of them are small and 2 are large. Both the 
small and the large objects can be of two different colors: 
either grey or black.   

Each organism is a member of a population of 100 
organisms. To find the connection weights which allow the 
organisms to perform correctly the task we used a  genetic 
algorithm, the evolution strategy described by Rechenberg 
(1973). We first assigned random connection weights to the 
neural networks of an initial population of 100 organisms. 
Each organism had a genotype encoding the organism's 
connection weights. We used a direct one-to-one mapping: 
each gene encoded a different connection weight as a real 
number. Then we tested each of these 100 organisms on 16 
randomly selected trials in Simulation 1 and on 32 randomly 
selected trials in Simulation 2. In each trial each organism 
started with a randomly chosen position of the arm and 
fingers and saw one of the four objects. At the end of the 
trials we assigned each organism a fitness value reflecting the 
organism's ability to perform the task.  

The fitness value was calculated when the fingers stopped 
to move. A positive fitness value was given to the organisms 
if the fingers stopped while touching the borders of the object. 
Also the distance of the fingers from  the object and the 
distance between the index finger and the thumb were 
evaluated and influenced fitness. The 20 best organisms were 
selected for (nonsexual) reproduction and each of them 
generated 5 offspring inheriting their parent's genotype with 
the addition of some random mutations. The 20x5=100 
organisms thus obtained represented the new generation. The 
process was repeated for 2000 generations. 

Predictions 
In Simulation 1 the task consisted in reaching and grasping 

appropriately the objects, i.e., the organisms had to learn to 
reach the objects and to grasp small objects with a precision 
grip and large objects with a power grip. Thus, Simulation 1 
was simply aimed to replicate what we typically do in real 
life, so we only expect that the organisms learn the task. In 
Simulation 2 the organisms had two different tasks: either 
they had to grasp the object with the appropriate grip or they 
had to respond to the object’s color by using either a precision 
or a power grip. Our critical predictions concern Simulation 
2. We expect that responses are faster (in terms of number of 
generations necessary to learn the task) in case of 
compatibility between the object size and the kind of grip 
used to classify the object, thus suggesting that object’s size 
automatically evokes, or “affords”, a specific response. We 
also predict that this advantage of the Compatible condition is 
reflected in the hidden units organization.  

Simulation 1 
In Simulation 1 we reproduced the real-life experience of 
grasping objects of different sizes in an appropriate way. In 
this simulation the organisms had to learn to react 
appropriately to the object’s affordances: they had to learn 
that, when they saw an object, they had to reach the object 
and grasp it in the appropriate way, i.e., using a power grip 
for large objects and a precision grip for small ones. This 
reflects exactly what we typically do in real life: we learn to 
react appropriately to objects’ affordances and to adapt our 
grip to object size.  

The fitness of the organisms depended on both their 
capability to reach the visually perceived object, i.e., to bring 
the hand to the right region of space, and to grasp the object 
appropriately.  

In order to obtain reliable results the simulation was 
repeated 10 times, starting with different sets of initial 
connection weights.  

Results 
All the results presented are the average of the 10 
replications. We calculated the average fitness of the 
organisms based on the percentage of correct responses and 
of errors (trials in which the organism did not reach or did not 
grasp appropriately the object) in performing the task. At the 
end of the simulation, i.e., after 2000 generations, the best 
organisms were able to respond correctly to all patterns, as 
shown in Figure 3. 

 
 

 
 
Figure 3: Simulation 1. Fitness of the best organisms and 

average population fitness across 2000 generations. 

Simulation 2 
After being trained for 2000 generations in Simulation 1, in 
Simulation 2 the organisms were trained for further 2000 
generations with 2 different tasks. The 2 tasks were encoded 
in the 2 input task units as 01 and 10, respectively.  

As in Simulation 1, the organisms saw four objects, one at 
a time, which could be small or large, black or grey. In order 
to make sure that the organisms didn’t “forget” what they had 
previously learned, with Task 1, encoded as 01, the organisms 



had to respond to the size of the object by grasping the object 
with an appropriate grip, ignoring the object’s color.  With 
Task 2, encoded as 10, they had to respond to the object’s 
color, ignoring its size. They had to respond using a precision 
grip when the object was grey and a power grip when the 
object was black. Thus in Task 2 the object’s size became 
irrelevant to the task.   

Task 2 reproduced the laboratory situation devised by 
T&E, with some small variations. T&E asked participants to 
classify the objects by pressing a device using either a power 
or a precision grip independent of whether natural objects 
(i.e., an apple or a cherry) or artifacts (i.e., a bottle or a 
needle) were small or large objects. In our simulation, 
teaching the network to distinguish between natural objects 
and artifacts would have been rather implausible. For this 
reason we decided to train the network to respond to objects 
of different color. Notice that the crucial aspect of T&E’s 
experiment was maintained: namely, the objects’ size was not 
relevant to the task (Task 2), independent of the fact that the 
organisms had to decide what kind of object (natural/artefact) 
they were seeing, or what color (grey/black) they were seeing. 
If the objects’ size affords a specific kind of action, then it 
should influence the organisms performance not only in Task 
1, but also in Task 2.  

Accordingly, our crucial prediction is that in the 
Compatible Condition - i.e., when object size and the kind of 
grip used to classify the object correspond - learning occurs 
earlier (in terms of number of generations) than in 
Incompatible Condition. If this is true, it would suggest that 
object’s size automatically evokes a specific kind of motor 
response, even if object’s size is not relevant to the task at 
hand.  

Results 
Simulation 2 was also repeated 10 times and the results 
presented are the average of the 10 replications.  

 
In order to control whether learning occurred earlier (in 

terms of number of generations) in the Compatible than in the 
Incompatible condition, we calculated the fitness for the best 
organism of each generation in Task 1 and in Task 2, in both 
the Compatible and in the Incompatible conditions; we also 
calculated the population average. 

As shown in Figure 4, the fitness of the best organisms and 
of the population average was higher in Task 1 than in Task 
2. However, the organisms learned both tasks. More 
importantly, in Task 2 Compatible Condition the average 
fitness for all the generations tested was superior than the 
average fitness in the Incompatible Condition. The advantage 
of the Compatible over the Incompatible condition was 
maintained also with respect to the performance of the best 
organisms of the generations we tested (see Figure 4). 

In order to compare the data obtained in the two conditions, 
we performed four within subjects Anovas. We compared the 
average fitness of the best organisms of each of the 10 
replications in the Compatible and in the Incompatible 
conditions at generations 500, 1000, 1500, and 2000. The 
results were straightforward and confirmed our prediction. At 
generation 500 and 1000 the performance of the best 
organisms in the Compatible condition was significantly 
better than in the Incompatible condition, as indicated by the 
significant difference between the Fitness value in the 
Compatible and in the Incompatible Condition [F (1,9) = 
6.42, Mse = 2.6, p >.03;F (1,9) = 5.81, Mse = 2.87, p >.04]. 
The advantage of the Compatible over the Incompatible 
condition dramatically decreased at generations 1500 and 
2000, suggesting that the best organisms had learned to 
respond to all patterns. This clearly indicates that the 
Compatible patterns were learned earlier, in terms of number 
of generations, than the Incompatible ones. 

 
 

 

Figure 4:  Simulation 2. Fitness of the Best Organisms in Task 1 and in Task 2, and comparison between the Compatible and the 
Incompatible Conditions in Task 2.

 



Hidden units analysis 
The results we found support our initial predictions: seeing 
objects automatically activates information on how to grasp 
them, also when this information is not relevant to the task. 
The hidden units analysis we performed was aimed to detect 
what kind of neural organization developed to perform the 
tasks. More specifically, we were interested in the neural 
organization used in Task 2 in both the Compatible and 
Incompatible conditions. We selected the networks of the 10 
best organisms of the last generation (generation 2000) and 
analyzed their hidden units’ activation patterns. The 
hypotheses we wanted to test are the following. If the motor 
information related to object size is automatically activated in 
Task 2, then: (1) the network should tend to change only the 
activation pattern of the Incompatible condition; (2) in the 
activation pattern of the units used for Task 2, the network 
should keep some “trace” of what it learned in Task 1. To 
find such a trace could help explain the advantage of the 
Compatible over the Incompatible condition.  

Figure 5 shows the activation patterns of the hidden units 
for two replications of the simulation. In the first row of each 
replication one can see the activation patterns of the 4 hidden 
units for each of the 4 patterns of Task 1, while the second 
row shows the activation patterns of the 4 units for each of the 
4 patterns of Task 2.  

The first and the last pattern in the second row represent the 
Compatible Condition: given a large, black object, the 
organisms have to respond with a power grip; given a small, 
grey object, the organisms have to respond with a precision 
grip. The two central patterns represent the Incompatible 
Condition, i.e., the cases in which the organisms had to 
respond with a power grip to a small, black object, and with a 
precision grip to a large, grey object. In interpreting the 
figures, our analysis will focus on the units whose value 
varies, as they may be active or not active depending on the 
pattern and the task. 

 Figure 5 shows that in order to perform Task 1 the network 
typically uses a single hidden unit, the value of which 
switches from 0 to 1. For example, in Seed 250 (see Figure 5) 
only the fourth neuron varies, and it has value 0 for large 
objects and value 1 for small objects.  

The situation is more complex for Task 2. First of all, 
consider that across all seeds the network changes the 2 
values of both Incompatible patterns. In the Compatible 
condition in 4 out of 10  replications the activation patterns do 
not change at all, while in the remaining 6 cases, only one of 
the two patterns changes. This confirms our first hypothesis, 
at least for the majority of the replications: in the Compatible 
condition the network maintains the same activation patterns 
used in Task 1 and a new unit is simply added to encode the 
new task. On the contrary, in the Incompatible condition the 
network has to be re-organized, and different units are used to 
encode the 2 tasks.  

Consider now the strategies used by the network in Task 2. 
It uses two different strategies, which we could call a 
“modular” strategy and a “distributed” strategy. In 6 out of 10 

replications the network, in order to determine the object’s 
color (Task 2), does not use the same neuron used to 
determine the object’s size (Task 1). The replication based on 
random seed 114 is a good example (see Figure 5): while the 
network uses the fourth neuron for Task 1, it uses the second 
neuron for Task 2. This suggests that while doing Task 2 the 
network “keeps track” of what it has learned in Task 1, and in 
order to determine color it does not use the same module 
“dedicated” to size. In the remaining 4 cases, the network 
distributes the information concerning color, i.e., the 
information useful to perform the motor task, over two 
neurons, one of which was the one used in Task 1 to 
determine the object’s size. An example is represented by the 
replication based on seed 250 (see Figure 5). This strategy has 
the advantage to be quite economical, as it allows the network 
to change the values of only one of the neurons used for Task 
1.  

Both the modular and the distributed strategies suggest that 
the network did not “forget” information used for Task 1. 
Consider, however, that the network could use a different 
strategy: it could keep the neuron “dedicated” to size with the 
same values and use 2 other neurons to determine color. This 
did not happen. The network worked in a very economical 
way, using only two neurons for both tasks. Thus in Task 2 
the network “kept track” of Task 1, but only for the 
Compatible condition. Otherwise it used primarily an action-
based strategy, i.e. a strategy which was oriented to the 
output. Thus our second hypothesis is only partially 
confirmed. 

 

 
 

Figure 5:  Simulation 2. The activation pattern of the 
hidden units in Task 1 (first row) and Task 2 (second row). 

Conclusion 
Our results confirm the findings obtained by T&E in their 
experiments: seeing objects automatically elicits motor 



information concerning the way we interact with the objects. 
Even if the object’s size is irrelevant to the task at hand, 
seeing the object activates the kind of prehension appropriate 
for its size. When the kind of grip and the object’s size are 
compatible, responding to the object’s color is quicker than 
when the kind of grip and the object’s size are not 
compatible.  

Our simulations leave the question open of whether 
compatibility results as those that we have described imply 
access to conceptual knowledge. According to an influential 
account, two different routes to action exist: a direct vision-
to-action route, mediated by on-line dorsal system processes, 
and a mediated vision-to-semantics-to-action ventral route 
(Rumiati & Humphreys, 1998). However, recent evidence 
suggests that the direct route to action may be limited to novel 
objects. With a dual task paradigm, Creem and Proffitt (2001) 
have shown that the ability to grasp common objects such as 
a hammer or a toothbrush appropriately by, for example, 
reaching for the object’s handle even if it is not oriented 
towards us, decreased with a semantic interference task, but 
not with a spatial interference task. This suggests that to 
perform gestures appropriate to objects it is necessary to 
combine conceptual knowledge with affordances derived 
from objects (Buxbaum, Schwartz & Carew, 1997). In 
addition, there is recent evidence of action-based 
compatibility effects, as those we obtained in the present 
simulation, with words rather than pictures (Borghi, Glenberg 
& Kaschak, 2004; Tucker & Ellis, 2004). The presence of 
these effects also with words argues either for a 
representation of the object encoded also in the dorsal stream 
(Gentilucci, 2003) or for the involvement not only of the 
dorsal but also of the ventral system and of long-term 
knowledge in generating affordances (Tucker & Ellis, 2004). 
These effects would be accounted for by long-term 
visuomotor associations between objects and actions executed 
on them. Simulating compatibility effects also with words 
referring to objects is one of the possible extensions of our 
work. 
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