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Abstract
We present an "ab initio" method that tries to determine the tertiary structure of unknown proteins by
modelling the folding process without using potentials extracted from known protein structures. We have
been able to obtain appropriate matrices of folding potentials, i.e. 'forces' able to drive the folding process to
produce correct tertiary structures, using a genetic algorithm. Some initial simulations that try to simulate
the folding process of a fragment of the crambin that results in an alpha-helix, have yielded good results.
We discuss some general implications of an Artificial Life approach to protein folding which makes an
attempt at simulating the actual folding process rather than just trying to predict its final result.

Keywords: Protein Folding, Genetic Algorithms, Artificial Life.



An artificial life model for predicting the tertiary structure of
unknown proteins that emulates the folding process

Raffaele Calabretta §    Stefano Nolfi*   Domenico Parisi*

 § Centro di Studio per la Chimica del Farmaco
Dipartimento di Studi Farmaceutici, University  of Rome "La Sapienza"

 National Research Council, Piazzale A. Moro 5, 00185 Rome, Italy
tel.: (+39) 6 86 09 02 33

*Institute of Psychology
 National Research Council, Viale Marx 15, 00137 Rome, Italy

 tel.: (+39) 6 86 09 02 31
 fax :  (+39) 6 82 47 37

e-mail: raffaele@gracco.irmkant.rm.cnr.it
stefano@kant.irmkant.rm.cnr.it

domenico@gracco.irmkant.rm.cnr.it

Abstract

We present an "ab initio" method that tries to determine the tertiary structure of unknown proteins by
modelling the folding process without using potentials extracted from known protein structures. We have
been able to obtain appropriate matrices of folding potentials, i.e. 'forces' able to drive the folding process to
produce correct tertiary structures, using a genetic algorithm. Some initial simulations that try to simulate
the folding process of a fragment of the crambin that results in an alpha-helix, have yielded good results.
We discuss some general implications of an Artificial Life approach to protein folding which makes an
attempt at simulating the actual folding process rather than just trying to predict its final result.

Introduction

The prediction of the three-dimensional structure of proteins is a great challenge both for the difficulty
of the task and for the importance of the problem. While computational approaches appear to be natural
candidates to solve it, optimization techniques that try to predict the result of the folding process by
ignoring the specificity of the process itself (Qian & Sejnowski, 1988; Fariselli et al., 1993) have
produced limited results. We claim that approaches in the spirit of Artificial Life (Alife) that try to
reproduce, even if in extremely simplified ways, the natural processes as they actually occur could be
more fruitful.

The protein folding problem presents many similarities with the kind of problems that have been
investigated in the Alife literature in the last few years. Proteins, like the simple artificial creatures
studied by several researchers in this field (Parisi et al., 1990; Wilson, 1991; Taylor & Jefferson,
1994), are physical entities that have their own structure, which interact with an external environment
(the solution), and which are made of sub-components which interact among themselves (the amino
acids). In addition, proteins "behave" by folding into a stable structure and such "behaviour" depends on
the interaction among the sub-components of the protein itself and between these sub-components and
the external environment. Finally, as in most Alife models, to each individual protein corresponds a
given fragment of DNA and the mapping between the genetic information and the final stable three-
dimensional structure of the protein is very complex and non-linear (Langton, 1992).



The protein folding problem

Many researchers have tried to predict the three-dimensional structure of proteins on the only basis of
the amino acid sequence. The attempt has been defined as trying to decipher the second half of the
genetic code (Gierasch & King, 1990). Success in this area would be the starting point for new research
directions with promising results and possible applications in many fields (biology, genetics, drug-
design, etc.).

Proteins chemically consist of the sequencing of structural units which are amino acids: each protein is
constructed with the same twenty amino acids which are arranged according to a unique and well
defined order. Each protein differs from any other in the number of amino acids linked together
(generally between 50 and 3000) and the sequence in which the various amino acids occur. The amino
acids are linked to each other by the peptide bond to form a typical linear polypeptide chain. The
polypeptide backbone is a repetition of the basic unit common to all amino acids. What changes is the
side-chain which is characteristic for each one of the twenty amino acids and is different in shape, bulk
and chemical reactivity.

The protein structure can be discussed in terms of three levels of complexity. The primary structure
refers simply to the linear amino acid sequence. The secondary structure describes the presence in the
protein of regular local structure (alpha-helix and beta-sheets), built with segments of the protein chain.
Finally, the tertiary structure represents the real three-dimensional structure of the entire protein.
Thanks to the possibility of alternating the twenty amino acids, proteins differ in amino acid sequence
(primary structure) and therefore in three-dimensional structure (tertiary structure). In other words, the
primary structure of a protein, as it is codified exactly in DNA, contains all the information to determine
the three-dimensional structure, on which the function of that protein finally depends. The proteins are
necessary macromolecules for the normal deployment of almost all biological processes, but for this to
happen it is necessary that the proteins, at the end of a folding process, assume their characteristic
spatial structure, which varies from protein to protein. In fact, after the ribosomal biosynthesis of a
protein as a linear chain of amino acids, the chain folds up rapidly until it assumes a stable and
functional three-dimensional structure. A linear or randomly folded chain would not be biologically
active.

On one hand, molecular biology methods have allowed us to identify the amino acid sequence of over
30,000 proteins (Swiss-Prot Data Bank; Bairoch & Boeckmann, 1992). On the other hand, by means of
X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR), we have been able to
identify the high-resolution structure of only over 1,300 of them (Brookhaven Data Bank; Bernstein et
al., 1977). In the next few years the gap is expected to increase due to the great mass of data originated
from the Human Genome Project.

Computational approaches to protein folding

Currently there is an increasing interest in the field of computational approaches to protein folding. As
Wodak and Rooman (1993) claim, this appears to be due to several factors:

(a) experimental mutagenesis studies have demonstrated that the overall fold of a protein is much more
tolerant to sequence modification (Sondek & Shortle, 1990);

(b) analyses of known three-dimensional structures have revealed structural similarity for proteins with
different functions (Farber & Petsko, 1990; Kabsch et al., 1990);

(c) the number of known high-resolution protein structures has significantly increased allowing
computational models to lie on more solid grounds;
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(d) there is an widening gap between the increase in known protein sequences and the lack of
information about the structure and function of most of them;

(e) finally, new computational approaches have been developed (Rumelhart & McClelland, 1986;
Holland, 1975) that appear to be promising for the protein folding problem and computational power
has increased significantly as well.

We will review some of the most significant attempts in this direction and then we will describe our own
model.

Extracting knowledge-based potentials

Several researchers have used computational models to design pseudo-energy functions that represent a
reduced description of detailed atomic force fields. These pseudo-energy functions or potentials are
usually expressed as a sum of several terms and mostly ignore side-chain atomic details.

Examples of such potentials are:

(a) Residue-specific secondary structure propensities (i.e. the tendency of a given residue to fold in a
helix, beta sheet or random coil structure; Rost et al. ,1994);

(b) Residue-residue potentials (i.e. the tendency of a given residue to end-up close to another one;
Maiorov & Crippen, 1992);

(c) Hydrophobicity (tendency of a given residue to interact with water; Casari & Sippl, 1992);

(d) Phi-psi backbone angle probabilities (the probability that two subsequent amino acids can assume a
certain relative position; Rooman et al., 1991).

These pseudo-energy function potentials can be derived from known protein tertiary structures by using
different computational methods (Statistics, Monte Carlo, Neural Networks, Genetic Algorithm).

The way in which statistics is used to extract potentials is straightforward: the probabilities of observing
the parameter of interest are computed and then normalised to correct for sample bias and finally
translated into scores (e.g. Bryant & Lawrence, 1993).

Neural networks, given their ability to classify noisy stimuli and generalize to new ones, have also been
used to predict the secondary structure of proteins (e.g. Rost & Sander, 1994).

Powerful optimization methods can also be used. Maiorov and Crippen (1992), for example, used an
optimization procedure to extract the residue-residue potentials. They derived the strengths of individual
contacts starting with non-correct values and then changing such values so that the potential energy of
any native structure in the training set would be lower than the potential of any alternative conformation
generated from segments of known protein structures.

The extracted function potentials can in turn be used in order to build models which are able to predict
the second or the tertiary structure of other sequences (see next paragraph). In other cases, potential
extraction and prediction of tertiary structure of unknown sequences can be realized at the same time
using a single model.

Application of knowledge-based potentials to prediction of folded structures

The availability of knowledge-based potentials allows us to go beyond the classical approaches based on
sequence alignment for predicting secondary and tertiary structure. The main idea is that the extracted
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potentials can be used to choose between alternative predicted structures by measuring which of them
results in lower energy value (e.g. which of them best conforms to the known residue-structure
propensity, residue-propensity, hydrophobicity, and virtually to any known potential). In other words,
the knowledge based potentials that are extracted from known protein structures can be used to evaluate
predicted protein structures.

There are two ways of using knowledge-based potential to predict the tertiary structure of sequences, a
hybrid method that combines the classical alignment procedure with the use of potentials and a pure
method that use the potential in order to derive the tertiary structure directly from the sequence.

The first approach involves scanning a library of sequences and corresponding known structure motifs
in search of compatible sequence-structure combinations, i.e. those which correspond to structures
which best conform to the known potentials (see for example Sippl & Weitckus, 1992). In this case
potentials are used to choose the best combination of chain folds present in the databases. The
combinations of folds that best align with the given sequence and best conform to potentials are selected.
This method produces good performance for proteins closely related to those present in the used
database but, as the distance increases, performance progressively deteriorates and it becomes
unreliable when the sequence identity is lower than 30% (Wodak & Rooman, 1993).

The second approach based only on potentials, by not restricting the space of possible tertiary structure
to a known limited set, is much more demanding because it is necessary to assess the value of the
potentials of a huge number of possible alternative configurations from which the correct fold needs to
be singled out. In this approach an initial wrong structure configuration is chosen and then the structure
is progressively modified for a given number of trials until the final configuration, which represents the
predicted structure, is obtained. In each trial the actual structure is evaluated by using potentials in
order to preserve good modifications (i.e. changes that result in a better configuration from the extracted
potential point of view) and to reject bad modifications. The search in the conformation space of a given
protein can be implemented by using different algorithms. In particular Monte Carlo (e.g. Godzik et al.,
1992) and genetic algorithms (e.g. Dandekar & Argos, 1994) have been used.

In the model of Dandekar and Argos (1994), an initial population of different hypothetical three-
dimensional structures for a given sequence are generated. Each individual of the population consists of
a vector of dihedral  and  rotation angles which in turn determines the folding of the main chain of the
corresponding protein. Individuals are evaluated according to a set of extracted potentials (secondary
structure propensities, presence of hydrogen bonds, hydrophobicity), and ad-hoc criteria (undesired
overlapping of C atoms) by determining if and how much a given structure conforms to each potential
or criterion. The sum of  all these positive and negative contributions constitute the individual's fitness
that determines which individuals are allowed to reproduce by generating copies of their vectors with the
addition of mutations and combinations between two 'parent' vectors. By repeating this process for a
certain number of generations, three-dimensional structures which have better and better fitness and
closely resemble the actual folded structure may be obtained.

Emulating the folding process by evolving abstract folding
potentials

We think that while using potentials extracted by folded sequences may be adequate in choosing
between alternative final structures as is necessary in hybrid approaches that combine folded sub-parts
of known protein structures, it may be less useful in "pure" or "ab initio" approaches in which the final
folded state is progressively determined through successive modifications starting from the initial amino
acid sequence. In fact, the type of conformations that a protein assume during the folding process may
differ from the final folded conformation. In other words, it may happen that a structure, in order to
reach its final stable state, is forced to pass through a state which even if it does not resemble the final
folded state is crucial in order to reach that state. Dandekar and Argos (1994), for example, in order to
limit search space, restricted the dihedral and rotation angles to a set of 7 standard conformations
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extracted from the topology of known folded proteins. However, it is not known whether during the
folding process significant different conformations of angles occur.

In our own work, we used an "ab initio" method that does not use pre-extracted potentials and that tries
to determine the tertiary structure of unknown proteins by modelling the folding process itself. In other
words, we did not want only to predict the final tertiary structure of proteins but we also wished to
model the temporal process of folding that results in such a structure. We are aware of the difficulty of
the task and of the fact that our results are very preliminary. But we believe that the method can have
some validity because a better understanding of the folding process itself, even in the limited case of
very short sequences, can have useful results.

For the present time we, as many others (e.g. Lau & Dill, 1990; Unger & Moult, 1993; Šali et al.,
1994), have modelled the primary structure of proteins in an extremely simplified way. Amino acid side-
chains are represented as spheres connected to the corresponding Cα of backbone with a link of fixed
length (see Figure 1); the backbone is represented as a chain of Cα atoms linked by pseudobonds
between the Cα atoms of successive amino acid residues (for a similar approach, cf. Oldfield &
Hubbard, 1994) .

Figure 1. Simulated protein at the beginning of the folding process.

The length of the link between the amino acid side-chain and the backbone is 25A and the pseudobond
between two succeeding Cα is 15A (which approximates the average length in real proteins), but can
slightly vary during the folding process. Different amino acid side chains all have the same dimensions
but can differ in the way they interact with other amino acid side chains and possiby with other
substances (e.g. water, but we have not explored this possibility yet). Side chains (spheres) by being
attracted or repulsed by other side chains can move in the three-dimensional space. However, in doing
so, because of the physical links, amino acid side chains can either (a) rotate around the backbone in the
three dimensions modifying the angles between their link and the backbone and/or (b) bend  the local
portion of the backbone (see Figure 2).

Figure 2a. A side-chain (sphere) rotating around the corresponding Cα.

Figure 2b. Side-chains (spheres) that bend the backbone by reciprocal attraction.
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A matrix of 20 x 20 values, which were initially randomly specified, determine for each amino acid how
much it attracts or repulses other amino acids within a given distance (100A). The attraction or
repulsion force is a function of both the value specified in the matrix and of the distance. The process
starts with the backbone and the amino acids aligned (see Figure 1) then, depending on the types of
amino acids and of the matrix of interaction forces, amino acids start to interact and as a consequence
move and fold the backbone. Amino acids are let free to interact for 100 steps. During each cycle, all
the interaction forces between neighbouring amino acids (spheres) are computed and then used to move
and fold the structure. It is important to notice that while at the beginning of the folding process only
amino acids close in the sequence are also close in the three-dimensional space and therefore interact,
during the folding process also amino acids distant in the sequence can end up close and start to interact.
As a consequence, the final folded structure is the result of the potential interaction of all the amino
acids that constitute the sequence.

The problem now is how to determine the matrix of interaction forces in order to emulate the folding
process. Once we have obtained a matrix able to fold primary structures into the right tertiary structures
we can use such a matrix to predict the tertiary structure of unknown proteins by artificially folding
them. For these reasons we can call this matrix of 'forces' folding potentials, i.e. potentials that do not
extract regularities of known tertiary structures but instead represent 'forces' able to drive the folding
process in order to produce correct tertiary structures.

In order to determine such folding potentials we used a genetic algorithm (Holland, 1975; Goldberg,
1989). We started with a population of 100 different matrices of folding potentials randomly generated
that represent Generation 0. We then used these potentials to artificially fold proteins with known
tertiary structures. In this way we obtained 100 different tertiary structures. The similarity of such
tertiary structures with the known right tertiary structure was measured (see below) and used to
determine which are the best individuals, i.e. the folding potentials that result in the best tertiary
structures. The best 20 individuals were allowed to reproduce by generating 5 offspring each that are
copies of the parent matrix of folding rules with the addition of mutations (i.e. random modifications of
10% of the folding potential values). These 20x5 individuals will constitute Generation 1. The process is
then repeated for a certain number of generations. The folding potentials of each generation will tend to
differ from the previous generation for 2 reasons: because they are the copies of the best individuals of
the previous generation and because they receive mutations. Mutations may produce better or less good
offspring with respect to the corresponding parents. However, selective reproduction will ensure that
only individuals that received good mutations will be able to reproduce.

The evaluation of tertiary structures can be realized in different ways. For each residue segment one can
measure the discrepancy of the alpha-carbon bend and torsion angles (see Oldfield & Hubbard, 1994)
between the real known tertiary structure and the artificially folded structure produced by each
individual matrix of folding potentials. The sum of these discrepancies represent a measure of the error
produced by the corresponding folding potentials. Therefore the lower the error is, the higher the
probability will be that the corresponding matrix of folding potentials will produce offspring.
Alternatively, one can use the sum of discrepancies in distance measured between all combinations of
Cα atoms in the three-dimensional space. In our first empirical attempts, the first method appeared to
produce better results. In addition, one should decide whether to consider only the discrepancies at the
end of the folding process (i.e. after 100 steps) or also as it is taking place. We decided to pay attention
to the discrepancies as the folding process is taking place but we weighted the discrepancies at the end
of the folding process more in order to force the evolutionary process to select potentials that result in
stable folded structures. Hence, the final evaluation of an individual is a weighted sum of the
discrepancies throughout the folding process.

In a first attempt to test this model we have tried to simulate the folding process of a fragment of the
crambin made of a sequence of 13 amino acids that result in an alpha-helix. We ran 10 simulations
starting with different randomly generated folding potentials. As Figure 3 shows, the error, i.e. the
discrepancy between artificially folded structures and the real tertiary structure, progressively decreases
across generations.
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Figure 4 shows six (not immediately) successive stages of the folding process generated by the evolved
potentials. A tertiary structure close to the expected one is obtained. In addition, it is interesting to note
that in most of the simulations the tertiary structure stabilizes after a certain number of folding steps.
How early the folding process reaches a stable stable state could be another component of the 'fitness
formula' used to select folding potential matrices for reproduction.
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Figure 3. Discrepancies between simulated folded proteins across generations in one of the most
successful simulations. For each generation the error of the best individual of the population is
shown.

Discussion

Artificial Life is an attempt at understanding all biological phenomena through their reproduction in
artificial systems, e.g. computer simulations. More specifically, Artificial Life simulates life phenomena
at various levels of biological entities (molecules, cells, organs, organisms, etc.) and tries to understand
how phenomena at one level are related to phenomena at other levels. At the same time, Artificial Life is
interested in determining similarities and differences in what happens at the various biological levels.

Computational approaches to the protein folding problem are often interpreted as alternative techniques
for predicting the tertiary structure of proteins given their amino acid sequence. There is no implication
that one is modeling or simulating the actual physico-chemical process that results in a given three-
dimensional configuration starting from a linear sequence of amino acids. An Alife approach to protein
folding suggests that one should try to model this process. The ability to predict the tertiary structure of
unknown proteins should come as a by-product of these modeling efforts.

Assuming that one is modeling the aminoacid sequence-to-tertiary structure mapping process, one can
ask potentially useful questions about how this process is related to other biological processes and to
their causes. For example, we have used a genetic algorithm to search for appropriate matrices of
folding potentials that would give us the correct tertiary structure given an aminoacid sequence. The
genetic algorithm can be interpreted either as a search or optimization technique which is only 'inspired'
by biological evolution or it can be taken to be a model of biological evolution. For example, when the
genetic algorithm is applied to populations of neural networks, by using the genetic algorithm one may
want to model the process of evolutionary change in a population of nervous systems, or organisms, or
behaviors, etc., and to study such phenomena as the shape of evolutionary change (e.g. gradualilty or
punctuated equilibria), evolutionary divergence, speciation, etc. Now, we can ask: When the genetic
algorithm is applied to the protein folding problem, are we modeling some actual process of evolution
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which has taken place (and is taking place) at the molecular level and has shaped the mechanism that
maps a linear aminoacid sequence into a three-dimensional structure? Can the population of folding
potential matrices be assimilated to a population of genotypes for neural networks?

STEP 0                                                                  STEP 25

        

STEP 50                                                                 STEP 60

         

STEP 75                                                                 STEP 100

         

Figure 4. Folding process of the best individual of the last generation of one of the most
successful simulations. For space reasons only 6 of the 100 time steps are shown.

The protein folding process can be viewed as a part of the larger process of mapping from the genotype
to the phenotype of an organism which is called development. Can we find similarities between the
process of protein folding which results in the 'adult' three-dimensional shape of the protein and the
process of development which takes place during the developmental age of a multicellular organism and
which result in the adult, mature form of the individual? For example, at the level of the organism all the
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successive phenotypical forms that are realized during development appear to be subject to an
evaluation in terms of fitness. Is this the case also for the successive spatial conformations that a
sequence of aminoacid assumes before the final stable conformation? This problem is technically related
to the choice of the 'fitness formula' when one is applying the genetic algorithm to the protein folding
problem. We have adopted a fitness formula which takes into consideration all intermediate
conformations but evaluates them only in function of their degree of approximation to the final
conformation. Is this solution correct? We have advanced the hypothesis that during the folding process
'odd' conformations may appear that deviate from the final shape but are useful as stepping stones to
arrive to the final shape. In this case a more sophisticated fitness formula would be more appropriate.
(Notice that fitness formulae should not be necessarily decided by the researcher but can be viewed as
evolvable - or co-evolvable - traits as any other trait; cf. Lund and Parisi, 1994).

In actual proteins the main force that drives the folding process appears to be hydrophobicity (i.e. the
aversion for water of nonpolar residues) while Van der Waals interactions (i.e. interactions between
dipoles), hydrogen bond interactions (i.e. sharing of an hydrogen atom between to two electronegative
atoms), and electrostatics interactions in general appear to play a secondary role (Dill, 1990). However,
as Dill states very clearly, driving forces are only half of the story. Another fundamental component that
determines the folding process appears to be a opposing forces, e.g. the impossibility that two chain
segments simultaneously occupy the same volume of space. Because the folding process involves the
collapse of the chain from a large volume to a small one the role of this opposing force appear to be
essential.

However, how the driving and the opposing forces produce the known three-dimensional structures is a
controversial matter. Dill (1990) claims that any driving force, given the volume constraint (i.e. the fact
that two elements cannot occupy the same space) would produce a structure with helices and sheets with
hydrophobic interaction as the likely driving force. In fact, he claims that "there are very few possible
ways to configure a compact chain, and most of them involve helices and sheet". In other words, he
hypothesizes that the tertiary structure drives the secondary structures and not vice versa. Computer
simulations appear to support this hypothesis because they show that the amount of secondary structure
(helices and sheets) increases as a chain becomes increasingly compact (Dill, 1990). However this
hypothesis is in contrast with NMR analysis which appear to suggest that "stable secondary structure
first forms the framework necessary for the subsequent formation of the complete tertiary structure"
(Udgaonkar & Baldwin, 1988). In addition, it remains to be determined what is the role of the other
forces and why is the native structure unique given the fact that hydrophobicity cannot alone determine
a unique native structure.

We think that models that reproduce the folding process like the one we have presented in this paper
could shed some light on these issues. To pursue our objectives we certainly need to complicate our
model by simulating the solution and by allowing the emergence of hydrophobic interactions between
amino acids and the solution itself. This could be done by using an additional matrix that specifies for
each amino acid the type and the strength of the hydrophobic interaction and by letting the genetic
algorithm select the values contained in the matrices. It would then be interesting to observe which type
of force will result the dominant one in the simulation, in particular if the hydrophobic forces will
outnumber in strength the forces between amino acids.

We also claim that it might be misleading to try to predict the tertiary structures of unknown proteins by
using minimization energy techniques based on potentials extracted by folded sequences. In fact, as we
have observed, the type of conformations that proteins assume during the folding process may differ
from final folded conformations. In addition, this approach requires that native conformations of
proteins are at global energy minima (Anfinsen, 1973). But, as Baker & Agard (1994) have observed,
"there are good reasons to think that the native states of proteins may not be at global energy
minima.....there may be large regions of conformational space that are kinetically inaccessible in which
a more stable state might exist". If this hypothesis is true, all computational efforts which try to find the
global minimum of a specified potential function would be unable to predict the native state of proteins.
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We think that our approach which is not based on minimization of energy but tries to select a set of
abstract forces which are able to induce the correct folding may avoid this problem.
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