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Abstract

The paper describes simulations on populations of neural networks that both evolve at the
population level and learn at the individual level. Unlike other simulations, the evolutionary task
(finding food in the environment) and the learning task (predicting the next position of food on
the basis of present position and planned network's movement) are different tasks. In these
conditions both learning influences evolution (without Lamarckian inheritance of learned weight
changes) and evolution influences learning. Average but not peak fitness has a better
evolutionary growth with learning than without learning. After the initial generations individuals
that learn to predict during life also improve their food finding ability during life. Furthermore,
individuals which inherit an innate capacity to find food also inherit an innate predisposition to
learn to predict the sensory consequences of their movements. They do not predict better at birth
but they do learn to predict better than individuals of the initial generation given the same
learning experience. The results are interpreted in terms of a notion of dynamic correlation
between the fitness surface and the learning surface. Evolution succeeds in finding both
individuals that have high fitness and individuals that although they do not have high fitness at
birth end up with high fitness because of learning to predict.

1. Introduction

Most organisms both evolve at the population level and learn at the individual level. Evolutionary change
occurs from one generation to the next while learning is change during the lifetime of a single individual. To
study how evolution and learning may interact much research has been dedicated recently to applying genetic
algorithms (Holland, 1975) to populations of neural networks that learn during life (Yao, 1993; Langton,
Taylor, Farmer, & Rasmussen 1991). Neural networks reproduce selectively on the basis of some fitness
criterion and offspring inherit some properties from their parent(s). Reproduction can be either sexual (two
parents) or agamic (single parent) and in both cases some random mutations introduce themselves during the
copying process. Furthermore, individual networks learn some task during their life. Although the changes
that result from learning (most often, changes in connection weights) are not inherited, the problem is if and
how  learning influences the course of evolution (e.g. by channelling evolution) and, viceversa, if evolution
influences learning (e.g. by selecting initial states).

In most work that examines evolution together with learning in neural networks there is no distinction
between the evolutionary task and the learning task. The fitness criterion is how much an individual network
learns a particular task. For example, Miller, Todd, & Hedge (1989) have examined how evolution can shape
the network architecture for learning the XOR task. An initial population of networks with randomly
generated network architectures and randomly generated initial weights learns the XOR task using
backpropagation. The individuals that after a fixed number of learning cycles have a smaller error in the task
are more likely to reproduce than other individuals. The offspring of the reproducing individuals inherit a
network architecture which is a recombination of complementary parts of their two parents' architectures, plus
mutations. Their connection weights are randomly generated at birth. This is repeated for a certain number of
generations. Architectures change during evolution and they converge toward one or a few types that appear
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to be particularly appropriate for learning the XOR task.

In simulations such as Miller et al.'s the evolutionary task, i.e. the task that determines the fitness of an
individual, and the task which is learned during life, are the same task. This makes it possible to study how
evolution can influence learning, in particular how evolution can create good initial conditions for learning. In
some researches evolution selects good architectures for learning (Miller, Todd, & Hedge, 1989; Kitano,
1990; Nolfi & Parisi, in press). In other cases evolution can select good initial weights or good learning rates
or momentums (Belew, McInerney, & Schraudolph, 1991), or even good learning rules (Chalmers, 1990). But
if the evolutionary task and the learning task are the same task, it is more difficult to investigate how learning
can influence evolution. Hinton & Nowlan (1987) have shown that learning can guide evolution in its
exploration of the space of possible genotypes when the learning task and the evolutionary task are the same
but their conception of learning is very artificial since learning is equated with random changes in the
phenotype.

Notice that there is no a priori reason for assuming that whatever is learned by a given individual during its
life automatically increases the individual's reproductive chances. But if the learning performance is directly
interpreted as fitness, we are actually making this unjustified assumption. In order to leave the problem of
how learning can be related with evolution open, it is necessary to separate the evolutionary task from the
learning task. A population of networks reproduce selectively on the basis of each individual's performance on
some task (evolutionary task). In addition, each individual learns some other task during its life (learning
task). By itself, the performance of each individual in the learning task has nothing to do with the individual's
fitness. However, since both what results from the evolutionary process and is genetically inherited and what
results from learning reside in the same individual (network), we can examine if and how evolution and
learning can influence each other.

In this paper we present some simulations of networks that evolve an ability to find food in their environment.
The fitness that determines each individual's reproductive chances is the number of food elements captured
during a fixed lifetime (evolutionary task). In addition each individual learns during its life to predict what
sensory changes will result from its planned movements (learning task). Individuals reproduce on the basis of
their food finding ability (performance in the evolutionary task), not on the basis of how much they learn to
predict (performance in the learning task). But, as we will see, what is found is that both evolution influences
learning and learning influences evolution in these circumstances.

2. The Problem

Let us begin by assuming that our ultimate goal is to create an organism (O) which is able to find food in its
environment (cf. Jefferson, Collins, Cooper, Dyer, & Flowers 1991; Ackley & Littman, 1991). We imagine
that O's environment is a two-dimensional grid-world. At any particular moment O occupies one of the cells.
A number of food elements are randomly distributed in the environment with each food element occupying a
single cell. O has a facing direction and a rudimentary sensory system that allows it to receive as input from
the environment the angle (relative to where it is currently facing) and the distance of the nearest food. We
shall also equip O with a simple motor system that provides it with a repertoire composed of four possible
actions. O may either turn 90 degrees right, turn 90 degrees left, move to the next cell in the facing direction,
or do nothing. Finally, when O happens to step on a food cell, it eats the food contained in it (the food
disappears).

The O's nervous system is modeled by a feedforward neural network constisting of three layers of units
(Figure 1). The input layer contains 2 nodes which encode sensory information from the environment and
another 2 nodes encoding the currently planned action. These 4 nodes are fully connected to an intermediate
("hidden") layer of 7 nodes. The 7 hidden nodes are connected to 2 output units encoding a motor action. The
sensory information from the environment concerns the angle (measured clockwise from O's facing direction)
and the Euclidean distance of the currently nearest food element. Both values are scaled from 0.0 to 1.0.
Motor actions are encoded in a binary fashion: 11=one step forward; 10=turn left; 01=turn right; 00=do
nothing. The actual analog values produced by the network are thresholded to the nearest binary value.
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Figure 1. Architecture used in Simulation 1

When O is placed in the sort of environment described above, the following sequence of events will occur.
Sensory input is received on two of the input nodes and a planned action (initially chosen at random) is
encoded in the other two input nodes. Activation flows through the hidden units to the output nodes. The
resulting activation values on the output nodes define the next motor action. At this point, the planned motor
action is actually executed (O turns or moves one step forward). This action will determine the next sensory
input from the environment. The motor action decided by the output nodes becomes the planned action in the
next cycle. Hence, O decides its motor actions on the basis of the current sensory input from the environment
(the position of the nearest food element) and its previously decided but not yet executed motor action.

We are interested in the question: How can O develop some purposeful behavior? How can O acquire the
ability to seek out food in an efficient manner? (We define efficiency simply as the number of food elements
eaten in a given number of actions. Since the connection weights of O are assigned at random O will move
haphazardly in the environment, eating food only when it happens by chance to step on a food cell. Its
behavior won't seem very purposeful and in any case it is unlikely to be very efficient.

One way of having O develop a better eating ability would be to use a connectionist learning algorithm such
as backpropagation of error (Rumelhart, Hinton, and Williams, 1986). But backpropagation learning requires
the correct teaching input to be provided for each input/output pair. It seems highly unlikely that nature
provides most species with a "teacher" that gives organisms precise feedback at each step and leads them to
correct performance. Furthermore, the optimal strategy may be unclear, especially if the environment and/or
the task are complex ones. It would be preferable for the network itself to develop useful eating strategies
rather than learn a particular strategy devised by us.

This can be obtained if we use natural selection in a population of networks - in a sense, if we "breed"
networks. By having a population of different networks reproduce selectively on the basis of their ability to
find food and by adding mutations in order to maintain a sufficient basis of variability in the population, we
should see a purposeful and efficient food finding behavior emerge across generations.

3. Simulation 1

In this simulation only evolution occurs in the population of networks. There is no learning during life. As we
will see, networks of successive generations are born with increasingly appropriate connection weights due to
selective reproduction and mutations but these connection weights do not change in any way during life.
Hence, the behavior of a particular network (i.e. how the network responds to any specific input) is identical
in all phases of its life.

The initial population is composed of 100 individuals, each with the architecture of Figure 1 and a randomly
assigned set of connection weights. Each individual network lives alone for a total of 5000 actions in an
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environment of 10x10 cells. The environment initially contains 10 randomly distributed food elements but
food is periodically reintroduced each 50 actions. At the end of life the 100 individuals are ranked in terms of
their fitness (total number of food elements eaten during life) and the best 20 individuals reproduce by
generating 5 copies each of their connection weights. The inherited weight matrices are mutated by selecting
5 weights at random and perturbing the weight's value by adding a quantity randomly selected in the interval
between +1.0 and -1.0. The process is continued for 100 generations.

If we look at the organisms' fitness (i.e. number of food elements eaten) throughout the 100 generations we
see that individuals increasingly able to approach food elements evolve. Figure 2 shows the fitness value of
the best individual and the average fitness value of the population for each of the 100 generations. Each curve
represents the average result of 10 simulations starting with different randomly assigned weights.
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Figure 2. Average and peak food eaten (ordinate) as a function of generation (abscissa).

4. Simulation 2

In Simulation 1 an evolutionary mechanism was used to develop networks which exhibit a desired behavior.
The behavior is innate in the sense that it is displayed at birth and does not require any learning or experience.
But in real organisms most behavior is not determined by innate knowledge alone but it results from the
interaction between innate knowledge (in the current scenario, the weight matrix at birth) and learning
(changes in weights through experience). Several researchers have suggested that there is an interaction
between genetically transmitted knowledge and learning (Baldwin, 1986; Waddington, 1942; Hinton &
Nowlan, 1987; Belew, 1989; Belew, McInerney, & Schraudolph 1990; Parisi, Nolfi, & Cecconi, 1992). In
many cases, what is learned may be only indirectly relevant to the pursuit of some endogeneously determined
behavior. What is learned is not the behavior itself but it may support the behavior.

We are interested in the question whether there may be some useful interaction between a genetically
inherited ability to find food and some other, ostensibly unrelated, information about the environment which
is learned during life.

If we want to use backpropagation of error as the learning mechanism we should ask where the necessary
teaching input comes from. The backpropagation procedure requires that for each input the network is told
from outside what is the expected correct output. In this way, the network can compare the actually produced
output with this expected output and change the weights to reduce the discrepancy between actual and
expected output. However, real organisms cannot generally be expected to have an external "teacher" that



5

tells them what is the correct response to each environmental input. (For a simulation in which the teaching
input for backpropagation learning is generated by the same network that learns on the basis of this teaching
input, cf. Nolfi & Parisi, 1993) Hence, we should choose a learning task for our networks for which the
assumption of such external "teacher" is a plausible one.

One such task is learning to predict the consequences of one's own actions. The networks of Simulation 1 live
in a (simulated) physical environment. (They are "ecological" networks. Cf. Parisi, Cecconi, & Nolfi, 1990.)
This implies that at any given cycle the network's input is partially determined by the network's output in the
preceding cycle. For example, if the current angle of the nearest food is 90 degrees (angles are measured
clockwise from facing direction) and the network responds to this input by turning 90 degrees on the right, the
next angle of food will be 0 degrees. On the other hand, if the network's response is a different one, for
example turning 90 degrees on the left, the next input will be a food angle of 180 degrees.

We can exploit this tendency of ecological network to determine their own input by making them learn to
predict what the next input will be given the current input and a planned motor action. The networks do not
learn which specific motor actions are good or bad but simply that there are sensory consequences attendant
upon specific movements in the context of specific environmental inputs. While this training involves
supervised learning, the information required for supervision is itself available in the environment. For
example, if the current food angle is 90 degrees and the network's response is turning 90 degrees on the right,
we can ask the network to make a prediction regarding the next food angle just before actually executing the
movement. When the movement is executed it will physically cause some consequences that will determine
the next input for the network. These actually produced consequences are the teaching input. The network can
compare the predicted consequences of its behavior with the actually realized consequences and learn to make
better predictions in the future by changing its connection weights using the backpropagation procedure.

In order for the networks of Simulations 1 to learn this prediction task it is necessary to slightly modify their
architecture so that it includes additional output units for encoding the network's predictions. As before, there
are 4 input units (2 units encode the current position of the nearest food element (angle and distance) and the
other 2 units encode the currently planned movement) and 7 hidden units. The output units are 4. Two units
encode the motor output of the network (as in Simulation 1). The two new output units encode a prediction on
what the future position (angle and distance) of the nearest food element will be given its current position and
the currently planned action (cf. Figure 3.)

Figure 3. Architecture used in Simulation 2

At any given cycle these networks generate two outputs pertaining to two different tasks. One task it to move
in the environment to find food efficiently. The other task is to make correct predictions on the sensory
consequences of these movements. Notice that, given the architecture of Figure 3, the two tasks share a set of
weights, i.e. the lower weights from the input units to the hidden units. But, in addition to these shared
weights, the two tasks use two separate sets of weights. The food finding task uses the weights from the
hidden units to the two motor output units. The prediction task uses the weights from the hidden units to the
two prediction output units.
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It is also important to be clear how these various weights are shaped by evolution or learning. The teaching
input for learning to predict changes the weights from the hidden units to the prediction units and the shared
lower weights but it leaves untouched the weights from the hidden units to the motor output units. Of course,
these changes due to learning are not genetically inherited. An offspring receives at birth the weight matrix of
its parent's network as it was at its parent's birth, not as this weight matrix has been modified by its parent's
learning to predict during its life. (No inheritance of acquired traits.)

On the other hand, all the weights are shaped by evolution. Therefore, we might expect some influence of
evolution on learning to predict. Networks reproduce on the basis of their food finding ability. As a
consequence, as we will see, the weight matrices that are inherited at birth by successive generations of
networks tend to reflect increasing levels of the ability to find food. This ability is neurally represented in the
shared lower weights and in the weights from the hidden units to the motor output units. However, evolution
has the possibility also to shape the separate set of weights from the hidden units to the prediction units
because these weights too are genetically inherited together with the other weights.

Another consequence of this architecture is that learning to predict during life can have an effect on the
behavior of looking for food during life. In Simulation 1 the ability to find food did not change during life. A
network responded to environmental input with the same motor output in all stages of its life. The ability to
find food changed (increased) from one generation to the next but it remained identical during the life of a
single individual because nothing changed in the individual during its life. The situation is different in the
present simulation. Since some of the weights that support the behavior of looking for food (the lower weights
from the input units to the hidden units) are changed by prediction learning, these weight changes can affect
the behavior of looking for food. A particular individual can respond to the same input in different ways in
different stages of its life. Hence, we can also expect some influence of learning to predict on the evolution of
the capacity to find food in the environment.

We have run a second set of simulations identical to first set except that (a) the network architecture is that of
Figure 3, and (b) at each cycle the networks are taught to predict. In each cycle the following events occur.
The network receives an encoding of the position of the nearest food and an encoding of the motor action
decided in the previous cycle (planned action) as input. The network generates two outputs in response to this
input. The motor output units encode a decision on the next motor action (which becomes the planned action
input in the next cycle). The prediction output units encode a prediction on the next sensory input. The
algorithm that controls the whole process executes the currently planned action by moving the organism in the
environment and it computes the new sensory input resulting from this action. This new sensory input is used
as teaching input for the prediction output units and as sensory input for the next cycle. The weights that have
generated the prediction output are changed using the backpropagation procedure (with a learning rate of 0.2)
and then a new cycle begins.

We will analyze the results of these simulations to examine separately the influence of learning on evolution
and the influence of evolution on learning.

Figure 4 and 5 show the results regarding the evolution of the food finding ability in this population of
networks. The evolutionary increase in fitness (number of food elements eaten) is compared with the
corresponding increase in Simulation 1. Figure 4 shows the peak performance and Figure 5 the average
performance. Each curve represents the average result of 10 different simulations with different random
assignments of initial (G0) weights. As one can see, the simulations with and without prediction learning yield
similar peak performance but the simulations with learning yield better average performances on the eating
task even though what is learned during the life of an O is not inherited by its offspring. A two-factor analysis
of variance was performed on the average performance, the two factors being the two different populations
(with and without learning) and generation. The results show significant effects of population  (df 1/18, f=9.8,
p<0.006), generation (df 4/72, f=214.7, p < 0.001), and interaction between generation and population (df
4/72, f=3.29, p < 0.015). Post-hoc comparisons based on the Duncan test revealed significant differences
between the two populations for generations 25,50,75,99 (all p <0.021) but not for generation 0.
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Figure 4. Peak food eaten (ordinate) as a function of generation (abscissa) in the simulations with and without
learning.
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Figure 5. Average food eaten (ordinate) as a function of generation (abscissa) of the simulations with and
without learning.

Another way of analyzing the possibile influence of learning to predict on the capacity to find food is to
determine if and how the behavior of looking for food changes during the life of an individual while the
individual is learning to predict. We know that this behavior is genetically inherited and there is no learning of
this behavior during life. However, since some of the weights the generate this behavior (the lower weights)
are modified during learning to predict, we might expect a possible influence of learning to predict on the
behavior of looking for food. Is there such an influence? Is it a positive or a negative influence?

The answer to these questions is contained in Figure 6. This figure shows the average number of food
elements eaten in each epoch of life (an epoch is a succession of 250 actions) by individuals of successive
generations. Each curve represents the average performance of 10 simulations. From this figure it is clear that,
after the initial generations, learning to predict during life has a beneficial effect on the ability to find food.
The weight changes that take place in individual networks that are learning to predict cause the food finding
behavior of these network to become more effective. A two-factor analysis of variance was performed with
epoch of life and generation as the two factors. The results show significant effects of epoch of life
(df=19/1881, f=172.0, p<0.001), generation (df 10/99, f=37.9, p < 0.001), and interaction between epoch of
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life and generation (df=190/1881, f=3.12, p < 0.001). Post-hoc comparisons using the Duncan test revealed
significant differences between the two populations for generations 9,19,29,..,99 (all p <0.001) but not for
generation 0.
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Figure 6.  Average food eaten (ordinate) as a function of epoch of life (abscissa).

From these results we can conclude that learning during life to predict how the input from the world changes
with Os' movements helps in evolving good eating strategies. Hence, learning influences evolution. But what
about the complementary question? Does the evolution of good eating strategies also help in the task of
learning to predict? Does evolution influence learning?

To obtain a direct answer to this question we can teach the Os of the first simulation (the one without
learning) to predict the sensory consequences of their behavior and see if the Os of the last generation that
have evolved an ability to eat food learn to predict faster than the Os of the first generation. (Notice that to
teach these networks to predict we had to change their architecture from the architecture of Figure 1 to that of
Figure 3.)

However, we could not use the behavior that the networks themselves generate because the Os of the first
generation and those of the last generation do not have the same behavior (they execute different movements
in the same context) and therefore the results of this test would not tell us much. Completely random Os such
as those of the first generation usually exhibit stereotyped behavior (e.g., they tend to execute the same
movement in response to all sorts of inputs), whereas the Os of the last generations have evolved more
complex behaviors that allow them to eat rather efficiently. And the kind of behavior exhibited by various Os
can influence how much they learn from being taught to predict the sensory consequences of this behavior.

To avoid this problem we tested the learning ability of the Os of the first and of the last generation by
selecting a list of actions and making them all carry out the same actions instead of letting them move by
themselves. (The actions were actually chosen randomly). The varying percentage of correct predictions
during 20 epochs of training are shown in Figure 7. The predictions generated by the networks were divided
into 4 classes (activation values from 0.0 to 0.25, 0.25 to 0.5, 0.5 to 0.75, and 0.75 to 1.0, of the two
prediction output units) and a network's answer was considered as correct if the output value computed by the
network was in the same class of the teaching input value.
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Figure 7. Percentage of correct predictions (ordinate) as a function of epoch of life (abscissa). G0 represents
performance of networks with randomly selected weights (i.e. generation 0). G99 represents performance of
the last generation of Simulation 1. Performance at epoch 0 were computed without modifing the the
networks' connection weights.

As this figure shows, the prediction ability of the Os of the last generation increases faster as a consequence of
learning than that of the Os of the first generation. This means that Os that incorporate genetically inherited
eating strategies learn to predict better than those which do not incorporate such strategies. Notice however
that there is no difference in learning ability at birth. What the evolved networks of the last generation inherit
genetically is an innate predisposition to learn to predict, not an innate ability to predict.

Another way of investigating the question if the possession of good eating strategies helps in learning to
predict is to examine the Os of our second simulation, i.e. Os that are taught to predict during their life. Even
if the changes due to having learned to predict during life are not inherited, networks could learn to predict
better if they have ancestors that have also learned to predict during their life. To determine if this is true we
must ascertain if the Os of the last generation in our second simulation (the one with learning) learn to predict
better than the Os of the first generation. However, even if we find that this the case, we don't know if this
happens because the Os of the last generation have developed good eating strategies by evolution or because
their ancestors have learned to predict during their life. In fact, we already know that evolving eating
strategies by itself helps in learning to predict. But if we find that the improvement in learning to predict is
greater than the improvement that we have observed in the simulation without life learning, we must conclude
that both the evolution of good eating strategies and the life learning of the preceding generations make the
successive generations learn to predict better. As is shown in Figure 8, this is what actually happens.
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Figure 8. Percentage of correct predictions (ordinate) as a function of epoch of life (abscissa). G0 represents
performance of networks with randomly selected weights (i.e. generation 0). G99(1) represents performance
of the last generation of Simulation 1. G99(2) represents performance of the last generation of Simulation 2.

A two-factor analysis of variance was performed with the two factors being epoch of life and population. The
results indicate significant effects of epoch of life (df 20/520, f=780.1, p<0.001), population (df 2/26, f=53.9,
p < 0.001), and  interaction between epoch of life and population (df 40/520, f=27.7, p < 0.001). Post-hoc
comparisons based on the Duncan test show significant differences between the three different populations at
the end of each epoch of life (all p <0.001).

5. Parametric sensitivity

Running simulations of the sort described above requires choosing settings for a variety of parameters that
may influence what results are obtained. We carried out a number of simulations in order to understand the
sensitivity of the model to different values of these parameters and to determine the robustness of our main
result that learning during life has a beneficial effect on evolution.

We varied three parameters: number of mutations, population size, and number of reproducing individuals. In
each simulation one parameter was varied and the other two were kept constant (at the value of the
simulations described in the preceding sections). In a first set of three simulations the number of mutations
was varied: 2, 5, and 8 mutations. (The intermediate value in all simulations was that of the simulations
already described.) In a second set population size was varied: 64, 100, and 144 individuals per generation. In
a third set the number of reproducing individuals was varied: 16, 20, and 25. We run 10 simulations with
different initial random populations for each condition for both populations with and without learning.

The results in terms of the fitness of the best and the average individual of the last generation are summarized
in Table 1. From these results it is clear that the beneficial effect of learning to predict on the evolution of the
ability to eat is a robust one since it is found in all the conditions tested. The effect concerns the average
eating ability while it is practically non-existent (with even some inversions) for the eating ability of the best
individual.
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Number of mutations

2 5 8

peak average peak average peak average
no-learning 548 285 568 334 596 372

learning 512 370 572 420 547 422

Population size

64 100 144

peak average peak average peak average
no-learning 559 316 568 334 564 324

learning 497 362 572 420 610 428

Reproducing individuals

16 20 25

peak average peak average peak average
no-learning 563 326 568 334 558 355

learning 561 398 572 420 571 447

Table 1. Best and average fitness of the last generation in the populations with and without learning as a
function of number of mutations, population size, and number of reproducing individuals.

Another result is that there is a general tendency for all measures in all conditions to increase with number of
mutations, population size, and number of reproducing individuals. Again, the effect is most consistent in the
case of the average fitness in the population with learning. Since an increase in the value of all three
parameters can be interpreted as causing greater population variability, the beneficial effect of learning on
evolution appears to be enhanced when there is more variability to play with.

6. Discussion

We have found that evolution can affect learning and learning can affect evolution even if the effects of
learning (weight changes) are not genetically inherited and what is learned is an independent task with respect
to the task in terms of which individuals are evaluated for their fitness. Our main results are: (a) populations
that learn during life to predict the sensory consequences of their actions show a better evolutionary increase
in the average ability to find food in the environment; (b) after a certain number of generations learning to
predict during life has a beneficial effect on the ability to find food of the individual which is learning; (c)
individuals that have evolved an ability to find food do not directly inherit an ability to predict but they do
inherit a predisposition to learn to predict; this predisposition is demonstrated by better learning results when a
network is exposed to the appropriate learning experiences. Moreover, individuals which belong to a
population that learns during life demonstrate a better predisposition to learn at the end of evolution even if
what is learned is not inherited.

To try to understand these results it may be useful to reason in terms of the weight space that contains all
possible networks (more precisely, all possible weight matrices). This space is an abstract multidimensional
space with each dimension representing a particular network connection and each point in the space
representing a particular weight matrix. For each particular network (point in weight space) we can measure
the performance of the network in the evolutionary task and in the learning task. These two tasks have
independent performance surfaces: the fitness surface for the evolutionary task and the performance surface
for the learning task. (Good performances in the evolutionary tasks correspond to high values on the fitness
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surface and good performances in the learning task correspond to high values on the learning surface.)

Fitness-based reproduction means that individuals with higher values on the fitness surface are more likely to
reproduce than individuals with lower values. However, in purely evolutionary simulations without learning
(for example, in our Simulation 1) individual points do not move in weight space, although applying
mutations at reproduction implies that individual points (parents) are replaced by one or more points
(offspring) located near but not in the same position of their parent. (Remember that we are using agamic
reproduction in these simulations.) On the other hand, learning means that the weights of the network change
during lifetime and therefore individual points (weight matrices) move in weight space. If learning is
successful the movement of a network which is learning will be a movement toward positions in weight space
that tend to correspond to higher values on the learning surface.

Given a population which evolves and learns at the same time and has an evolutionary task which is distinct
from the learning task, we can ask how the fitness surface and the learning surface are reciprocally related.
(This problem of course does not arise in simulations in which the fitness of an individual is identical with its
performance in the learning task and, therefore, there is a single performance surface.) In evolutionary
simulations without learning the point in weight space that represents a particular individual does not move
during life and, as a consequence, the individual will have more or less the same fitness in all the epochs of its
life. When learning is added to evolution this may not be any longer true. The point representing the
individual moves in weight space and, therefore, the fitness of the individual will be a function (in our case,
the simple average) of the fitnesses of the various locations in weight space that the individual traverses
during learning. It becomes crucial, then, in what direction the individual moves in weight space during life.
This depends on learning and on the learning surface. Therefore, learning has the possibility to influence
evolution because learning decides which successive positions in weight space are traversed by a given
individual and, as a consequence, influences the particular's individual global fitness. More precisely, learning
can modify the ranking of the various individuals with respect to the ranking they would have obtained
without learning, i.e. by not moving from their initial position in weight space. Notice that this influence of
learning on evolution may exist even if there is no genetic transmission of learned changes. The offspring of a
reproducing individual occupy initial positions in weight space that are deviations (due to mutations) from the
position occupied by their parent at birth, i.e. prior to learning. But learning may influence evolution by
influencing the fitness of individuals on which evolution depends.

If one wishes to compare the fitness surface and the learning surface for a given evolutionary task and a given
learning task, respectively, it may be useful to distinguish between a notion of static correlation and a notion
of dynamic correlation between the performance surfaces of the two tasks. Two surfaces are statically
(positively) correlated if a weight matrix (a point in weight space) which has a given height in one surface
tends to have the same (relative) height on the other surface. On the other hand, two surfaces are dynamically
correlated if a weight matrix that moves towards higher values on one surface tends also to move toward
higher values on the other surface. But the initial (starting) position of the weight matrix need not correspond
to the same heights in both surfaces. Hence, even statically uncorrelated surfaces can contains regions of
dynamic correlation. Whatever the initial heights on the two surfaces of a given network residing in these
dynamically correlated regions, if the network moves in weight space it will tend to move to higher heights on
both surfaces.

Let us apply these notions to our population that both evolves a food finding ability across generations and
learns during life how to predict. If the fitness surface and the learning surface in our population were
statically correlated, we should find that the individuals of the later generations which have a high level of
food finding ability at birth also have a high level of prediction ability at birth. As Figure 7 shows, this is not
the case. While these individuals genetically inherit an ability to look for food they do not inherit an ability to
predict. Hence, high levels on the fitness surface do not necessarily correspond to high levels on the learning
surface. The two surfaces do not appear to be statically correlated. A further proof that this is the case is
contained in Figure 6. The individuals of the first generation show no increase in the ability to find food in
successive epochs of their life although these individuals do learn during their life to make better predictions
(cf. Figure 7, G0). This implies that, given a random sample of points in weight space (the initial population),
moving these points to new positions in weight space that correspond to higher values on the learning surface
does not automatically results in higher values on the fitness surface. Again, the two surfaces do not seem to
be statically correlated.
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However, there are indications that the two surfaces contain regions of dynamic correlation. One such
indication comes from the same Figure 6. After a certain number of generations, learning to predict during life
does have the effect of improving the food finding performance. This seems to imply that these individuals
are located in regions of weight space that are dynamically correlated. If an individual in these regions moves
in weight space toward higher values on the learning surface it automatically moves toward higher values also
on the fitness surface.

Our possible interpretation of these results is that in populations that both evolve and learn but have distinct
evolutionary and learning tasks evolution progressively selects for individuals that are located in regions of
dynamic correlation between the fitness surface and the learning surface. In other words, evolution selects for
initial points in weight space such as that when these points move because of learning their movement brings
them to new locations that correspond to higher levels not only on the learning surface (this is implicit in their
learning the learning task) but also on the fitness surface. This means that these points are located in regions
of dynamic correlation between the two surfaces. These regions may not be very numerous globally but
evolution may be able to find them.

That evolution is necessary to find them is shown by the results of Figure 7. In the first generation, when
evolution has had no chance yet to operate, the movement in weight space caused by learning leads to higher
values on the learning surface but not to higher values on the fitness surface. This implies that a random
population of points (the initial generation) which occupies the whole weight space evenly is unlikely to be
preferentially located in regions of dynamic correlation. However, after a certain number of generations, when
evolution has had enough time to play some role, the situation changes. Now learning causes a movement in
weight space that brings the points to higher values both on the learning surface and on the fitness surface.
The evolved population tends to be preferentially located in regions of dynamic correlation.

This may imply that an effect of learning is that not only individuals which have a high fitness at birth are
selected by evolution but also individuals that even if they do not have a high fitness value at birth, may end
up having a high fitness value because they have learned some task during life. It is not that learning
diminishes evolutionary pressures by making it less important to be born with high fitness. Learning changes
the nature of these evolutionary pressures. With learning there are two, possibly alternative, evolutionary
pressures. One evolutionary pressure is on being born with high fitness, the other is on being born not with
high fitness but in a region of dynamic correlation such that the changes due to learning automatically
translate in higher fitness.

But the two evolutionary pressures may both operate at the same time in a given population. One effect of this
is that at any given time a larger number of individuals can have high fitness values in a population that both
evolves and learns than it would be the case in a population that evolves but does not learn. This effect may
explain the results reported in Figure 5. Evolution plus learning causes a better evolutionary increase in fitness
with respect to evolution alone for the population average but not for the population's peak performance. This
could be explained in the following way. Without learning only one type of individuals tend to reproduce,
those that have high fitness at birth. With learning two types of individuals have good reproductive chances:
those with high fitness at birth and those that although they may not have particularly high fitness at birth are
located in regions of dynamic correlation between the fitness surface and the learning surface. This difference
may have no effect on the peak fitness value in each generation but it has an effect on the average fitness.
More individuals in each generation can have high fitness values when there are two routes instead than only
one to win the evolutionary game. As a consequence, evolution plus learning affects the population average
rather than the population peak values in fitness (cf. Figure 5). Williams & Bounds (1993), who made similar
simulations, also obtained better average performance in the learning condition but they did not find the
difference between the two conditions to be significant. This may be due to the fact that in their simulations
the learning task is different and more difficult to learn. Organisms are requested to predict the next sensory
input without having in input the planned action as in our simulations (see Figure 3). This may explain why
learning was less effective.

This interpretation can also help us understand the results concerning the effect of evolution on the ability to
predict. As we have seen (cf. Figure 8), the individuals of the later generation are not born with an ability to
predict but they are born with an innate predisposition to learn to predict. At birth they do not predict any
better than the individuals of the first generation but, when they are exposed to the same learning experiences
of the individuals of the first generation, they learn better than those individuals. We have already interpreted
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the lack of an innate ability to predict in these individuals as showing that the fitness surface and the learning
surface are not statically correlated. High values on the fitness surface (those of the individuals of the later
generations that know how to find food at birth) do not correspond to high values on the learning surface.
However, the two surfaces contain regions of dynamic correlation. And there is evidence showing that
evolution tends to select for individuals located in these particular regions because to be born in one of these
regions means that the changes due to learning automatically translate into higher fitness. But if in these
regions improvements in learning performance are correlated with increases in fitness it is likely that
evolution will choose those regions where learning is particularly successful. In other words, the individuals
of the later generation will be selected for their particular predisposition to learn to predict. As Kolen &
Pollack (1990) have demonstrated, backpropagation learning is sensitive to initial conditions (initial weight
matrices). Furthermore, Belew, McInerney, & Schraudolph (1991) have shown that evolution can be used to
select for good initial weight matrices for learning particular tasks. We conclude that in our populations
evolution succeeds in both selecting individuals that are located in dynamically correlated regions of the
evolutionary and learning surfaces and in selecting initial points in these regions where learning can give
better results.

6. Conclusions

If individuals learn during their life the same task they are selected for in the course of evolution learning and
evolution are directly and obviously related. Evolution can help learning by creating good conditions for
learning to occur (e.g. good initial weights, good network architectures, good learning rates, etc.) and learning
can guide evolution by exploring approximations to the solutions sought by evolution (Hinton & Nowlan,
1987).

However, it is not clear that it is legitimate to make in general the assumption that what is learned during life
automatically increases the fitness of the individuals that are learning that particular task. It is more probable
that what individuals learn (the learning task) and what individuals are selected for during evolution (the
evolutionary task) are more indirectly related. It then becomes an important open question what is that
particular (species of) individuals learn during life. Even if we know what they are being selected for, this
does not mean that we know as well what they learn.

In the present paper we have not directly tackled this more general question but we have explored some
preliminary problems by doing simulations in which the evolutionary task and the learning task are kept
distinct. A population of neural networks reproduces on the basis of an ability to find food in the environment
and learns to predict the sensory consequences of motor actions during life. We have found that even in these
conditions of a separation of the evolutionary task and the learning task, evolution and learning influence each
other in complex ways.

The general explanation of this reciprocal influence has not been simply that the fitness surface and the
learning surface are statically correlated, i.e. that individual networks (weight matrices) tend to have high
(low) values on both the performance surface of the evolutionary task and the performance surface of the
learning task. The relation between evolution and learning is more complex and it is rather captured by a
notion of dynamic correlation between the two surfaces. Instead of selecting for individuals that are good both
at the evolutionary task and at the learning task (there may not be no such individuals), evolution appears to
select for individuals that are located in sub-regions of weight space where the changes due to learning during
life tend to increase fitness.

A final comment concerns the reproduction scheme used in our simulations. We used agamic (single-parent)
reproduction with mutations but no crossover. (For a sexually reproducing population which uses the same
task, cf. Menczer & Parisi, 1992). The interaction between learning and evolution with distinct learning and
evolutionary tasks in a sexually reproducing population should be the object of further research.
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