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Abstract

What genotypic features explain the evolvability of organisms that have to accomplish many different tasks? The genotype of
behaviorally complex organisms may be more likely to encode modular neural architectures because neural modules dedicated
to distinct tasks avoid neural interference, i.e. the arrival of conflicting messages for changing the value of connection weights
during learning. However, if the connection weights for the various modules are genetically inherited, this raises the problem
of genetic linkage: favorable mutations may fall on one portion of the genotype encoding one neural module and unfavorable
mutations on another portion encoding another module. We show that this can prevent the genotype from reaching an adaptive
optimum. This effect is different from other linkage effects described in the literature and we argue that it represents a new
class of genetic constraints. Using simulations we show that sexual reproduction can alleviate the problem of genetic linkage by
recombining separate modules all of which incorporate either favorable or unfavorable mutations. We speculate that this effect
may contribute to the taxonomic prevalence of sexual reproduction among higher organisms. In addition to sexual recombination,
the problem of genetic linkage for behaviorally complex organisms may be mitigated by entrusting evolution with the task of
finding appropriate modular architectures and learning with the task of finding the appropriate connection weights for these
architectures.
© 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

What does it take to evolve behaviorally complex or-
ganisms? We define a behaviorally complex organism
as an organism which is capable of a variety of differ-
ent behaviors or functions (“tasks”), i.e. input/output
mappings, and in particular responds to one and the
same sensory input by processing the input in a num-
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ber of different ways. Of course, real animals do not
have separate and well defined tasks and evolution is
not concerned with optimizing specific tasks in real
animals, but in our simulations we have adopted these
simplifications to explore some hypotheses about the
evolution of behaviorally complex organisms. What
kind of genotypes explain the evolvability of such
organisms? In this paper, we provide some answers
to this question by simulating the evolution of be-
haviorally complex organisms using neural networks
(Rumelhart and McClelland, 1986) to model the ner-
vous system that controls the organisms’ behavior,
and genetic algorithms (Holland, 1992) to model the
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evolutionary process that changes their genotypes in
a succession of generations.

In Section 2we propose that, to avoid neural in-
terference that may arise if the same connections are
dedicated to different tasks, the accomplishment of
different tasks may be easier with modular neural net-
works, that is, neural networks which are divided up
into separate modules each dedicated to a particular
task. InSection 3we introduce the notion of genetic
linkage which explains why genotypes divided up into
separate genetic modules encoding different neural
modules may be inefficient because they may be sub-
ject to conflicting mutations falling on different but ge-
netically linked modules. InSection 4we show that the
problem of genetic linkage has a very general nature
and it is not restricted to cases in which two or more
tasks are of different difficulty and the evolution of the
capacity to evolve the easier tasks first makes it impos-
sible to subsequently evolve the more difficult tasks.
In Section 5we consider the role of sexual reproduc-
tion in at least partially solving the problem of genetic
linkage in that sexual recombination allows the selec-
tion process to more efficiently eliminate unfavorable
mutations and retain favorable ones. InSection 6we
provide a number of biological arguments for our in-
terpretation of our results. InSection 7we draw some
general conclusions and we advance the hypothesis
that the evolution of behaviorally complex organisms
requires genotypes that encode modular network ar-
chitectures but entrust learning with the task of finding
the appropriate connection weights for the different
neural modules. The reason for these different roles of
evolution and learning is that evolution is guided by a
global evaluation signal (fitness) and it seems “not to
care” about the specific capacities of individuals but
only about their total performance, whereas learning
during life can use distinct evaluation signals (teach-
ing inputs) for each separate neural module.

2. Modularity in network architecture solves the
problem of neural interference

Imagine an organism that must accomplish two dif-
ferent tasks in response to the same sensory input. The
organism visually perceives an object and it must rec-
ognize both where the object is located (Where task)
and what type of object it is (What task) (Ungerleider

and Mishkin, 1982; notice, however, that subsequent
work has contested Ungerleider and Mishkin’s inter-
pretation of the two tasks in terms of two separate
pathways in the brain (Milner and Goodale, 1995)). If
the organism’s nervous system is modeled by a non-
modular neural network, neural interference can arise
that will negatively affect the organism’s performance.
A nonmodular neural network is a network in which
the same connections are involved in both the Where
and What tasks. Neural interference can result from
the fact that in learning the two tasks the weight of
one of the connections may need to be increased to
accomplish one task and decreased to accomplish the
other task. If there is no way out of this conflicting sit-
uation, it may be impossible for the organism’s neural
network to acquire the appropriate connection weights
for accomplishing both tasks adequately.

Neural modularity can be a solution to this problem.
A modular network is a network in which some of the
network’s connections are dedicated to one task and
play no role in the other task while some other con-
nections are dedicated to the second task and are not
used for the first task. This type of modularity solves
the problem of neural interference because the weights
of the connections that are proprietary for any single
task can be increased or decreased to accomplish the
task without interfering with the accomplishment of
the other task.

Rueckl et al. (1989)have shown that a neural net-
work that must recognize which of nine geometrically
different objects is located in which of nine different
spatial positions in a retina (Fig. 1) is better able to
learn the task using the backpropagation algorithm if
the network architecture is modular rather than non-
modular. The visual input is contained in a 5× 5 cell
retina (Fig. 1a) which maps into 25 input units. These
25 input units are all connected to each of 18 hidden
units (lower connections). There are 18 output units, 9
encoding localistically the 9 different positions of the
object in the retina (Where output units,Fig. 1b), and
9 encoding the 9 different objects (What output units,
Fig. 1c).

What distinguishes the modular from the nonmodu-
lar architecture is the pattern of connections projecting
from the 18 hidden units to the 18 output units (higher
connections). In the nonmodular architecture all 18
hidden units project to each of the 18 output units. In
the modular architecture 14 hidden units project only
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Fig. 1. The What and Where tasks. Retina (a), nine different
locations (b), and nine different objects that can appear in each
location (c).

to the 9 What output units and the remaining 4 hidden
units project only to the 9 Where output units (Fig. 2).
(More hidden units are dedicated to the What task
than to the Where task because the What task is more
complex than the Where task. SeeRueckl et al., 1989.
We will come back to this further.) Therefore, in the
nonmodular architecture all the lower connections are
involved in both the What and Where tasks, and this
may result in neural interference, whereas in the mod-
ular architecture some of the lower connections are

Fig. 2. Modular and nonmodular architectures for the What and Where tasks.

responsible only for the What task and the remaining
connections only for the Where task—and this rules
out neural interference. In fact, Rueckl et al. have
found that a neural network trained with the backprop-
agation procedure learns the two tasks much better if
its architecture is modular rather than nonmodular.

In Rueckl et al.’s simulation the network archi-
tecture is fixed and hardwired by the researcher.Di
Ferdinando et al. (2001)have done a series of simula-
tions in which the network architecture for the What
and Where tasks is not decided by the researcher
but it evolves in a population of networks using a
genetic algorithm. In some of these simulations the
connection weights for the particular genetically in-
herited architecture are learned during each individual
network’s “life” using the backpropagation algorithm,
exactly as in Rueckl et al.’s simulations. The simu-
lation begins with a population of 100 networks each
with a randomly generated pattern of higher connec-
tions. Starting with random connection weights which
are assigned at birth to each of the 100 individuals,
each individual learns the connection weights for the
What and Where tasks using the backpropagation
algorithm and is assigned a fitness value (sum of the
two “errors” in the two tasks, with a minus sign)
at the end of life/training. The 20 individuals with
highest fitness (smallest total error) are selected for
reproduction and each of them generates 5 offspring.
The 20× 5 = 100 new individuals constitute the
next generation. Each offspring inherits the same net-
work architecture of its single parent (reproduction
is asexual) but not its parent’s connection weights.
The inherited network architecture is subject to ran-
dom mutations that can modify the network’s pattern
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of higher connections, i.e. the connections between
the hidden units and the output units. After a certain
number of generations the average fitness is very
good and comparable to Rueckl et al.’s results. What
is of interest from our present perspective is that the
evolved architecture that emerges at the end of evolu-
tion approaches Rueckl et al.’s modular architecture
with 14 hidden units dedicated to the What task
and 4 hidden units dedicated to the Where task. In
other words, evolution spontaneously finds the same
modular network architecture that Rueckl et al. have
found to be the optimal one for the What and Where
tasks.

3. Genetic interference

Imagine now we entrust evolution with both the task
of finding the best network architecture for the What
and Where tasks and the task of finding the appropri-
ate connection weights for this architecture. In other
words, unlike the preceding simulation everything is
genetically inherited, both the network architecture
and the connection weights, and there is no learning
during life. Under these conditions it turns out to be
impossible to create neural networks that are able to
solve both the What and Where tasks (Di Ferdinando
et al., 2001). The error on the two tasks at the end of
the simulation remains substantial. This result can be
explained by the fact that some particular set of con-
nection weights is an appropriate set of connection
weights allowing the network to solve both tasks only
with respect to some particular network architecture,
not with respect to any network architecture. In some
of Di Ferdinando et al.’s simulations the inherited
genotype encodes both the network architecture and
the connection weights for the architecture and, when
an individual inherits a particular genotype, this im-
plies that the network architecture and the connection
weight encoded in the genotype are well adapted to
each other, otherwise the individual’s parent would
have not been selected for reproduction. However, if a
mutation changes the inherited network architecture,
the associated set of connection weights encoded in
the same genotype may suddenly cease to be appro-
priate for the changed architecture. This may explain
why the genetic algorithm is unable to find a solu-
tion for both the What and Where tasks if everything

is genetically inherited and evolution must identify
both the appropriate network architecture and the
appropriate connection weights for this architecture.

Another explanation of this result might be that “in
the initial generations the algorithm concentrates on
the easier task, the Where task, and dedicates many
computational resources (hidden units) to this task.
When the performance on this task is almost perfect,
however, the algorithm is unable to shift computational
resources from the Where task to the more difficult
What task” (Di Ferdinando et al., 2001).

However, even in the few cases in which evolution
is able to find the appropriate network architecture for
the What and Where tasks, evolution is unable to also
find the appropriate connection weights for this archi-
tecture. In the few replications of the simulation in
which the evolved architecture approaches the optimal
one (14 hidden units for the What module and 4 hidden
units for the Where module), the terminal error does
not approach zero (Di Ferdinando et al., 2001). This
may indicate that the problem goes beyond the fact
that mutations can disrupt an evolved co-adaptation of
network architecture and connection weights for this
architecture. Evolution may be more generally unable
to find the appropriate connection weights for modu-
lar architectures.

We can lighten evolution’s burden if we entrust evo-
lution only with the task of finding the appropriate
connection weights for a fixed, and optimal, network
architecture. In other words, inherited genotypes en-
code only the network’s connection weights while the
network architecture is fixed (it is the optimal network
architecture with 14 hidden units for the What task
and 4 hidden units for the Where task) and therefore is
not encoded in the genotype and does not evolve. This
approach to constructing artificial organisms that are
capable to solve particular tasks has been used suc-
cessfully in many simulations (see, e.g.Yao, 1999). In
these simulations evolution has been repeatedly shown
to be able to find the appropriate connection weights
for a fixed network architecture as an alternative to the
backpropagation procedure. However, in most pub-
lished simulations that have used the genetic algorithm
to evolve the connection weights for fixed architec-
tures, the organisms have to solve only one task and
therefore their network architecture tends to be non-
modular. Will evolution be able to find the appropriate
connection weights for a fixed modular architecture
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controlling the behavior of organisms that must solve
both the What and the Where tasks?

We have realized a set of simulations in which the
neural network architecture is fixed and is the opti-
mal modular one for the What and Where tasks (14
hidden units for the What task and 4 hidden units for
the Where task) and the genetic algorithm needs only
to evolve the appropriate connection weights for this
architecture. (Unless otherwise specified, all simula-
tions reported in this paper use a mutation rate of 10%,
i.e. there is a probability of 10% for each connec-
tion weight to be mutated by adding a quantity ran-
domly chosen in the interval between−1 and+1 to
the weight value, which is encoded as a real number.
Moreover, all the results represent the average of 10
replications of each simulation.) We have compared
the results obtained using this architecture with those
obtained with a fixed nonmodular architecture.

As shown inFig. 3, for both the modular and the
nonmodular network architecture the genetic algo-
rithm is unable to find the appropriate weights for

Fig. 3. Average fitness for the What and Where tasks across 50.000 generations for modular and nonmodular architectures when network
architecture is fixed and what evolves is only the set of connection weights for the architecture. (In all figures S.E. are also shown.)

the two tasks. It is important to notice that while
what we have called neural interference is present
in the nonmodular architecture because all the lower
connections in this architecture serve both the Where
and the What tasks, this is not true for the modular
architecture. In the modular architecture distinct sets
of connections are used for the two tasks and they
can be separately adjusted by the evolutionary pro-
cess without reciprocal neural interference. Hence,
neural interference cannot be invoked to explain the
bad results obtained by the genetic algorithm.

We believe that these results may be caused by an-
other type of interference, this time not at the neural
but at the genetic level. This type of genetic interfer-
ence occurs because different portions of the genotype,
encoding different neural modules, are linked together
in the same genome and are inherited together (i.e. the
phenomenon of genetic linkage). Why do we invoke
genetic linkage as an explanation for our negative re-
sults with modular architectures? We know that when
the connection weights of a modular architecture are
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adjusted using the backpropagation algorithm this type
of learning procedure is able to find the appropriate
connection weights for both the Where and What tasks
and the total error approximates zero (Rueckl et al.,
1989). This appears to be due to the fact that when
one is using the backpropagation algorithm it is as if
one were using two separate learning processes, one
for the Where task and the other for the What task. In
each cycle the backpropagation algorithm computes
two separate errors, one for each neural module, and it
modifies the connection weights of each module sep-
arately on the basis of the appropriate error. The total
error is simply the sum of the two separate errors for
the two tasks.

Two separate errors are computed also if one uses
the genetic algorithm instead of the backpropagation
algorithm and the connection weights are evolved
rather than learned. But there is a critical difference
between the two algorithms. When one uses the back-
propagation learning algorithm each separate neural
module is separately informed of the network’s per-
formance on each distinct task. On the contrary, when
one uses the genetic algorithm the fitness formula
which is used to determine which individuals repro-
duce and which individuals do not reproduce repre-
sents a global evaluation of each individual, summing
together the error in the What task and the error in
the Where task. This creates the conditions for a form
of genetic interference caused by genetic linkage.

Consider what may happen when a genotype which
is divided up into two separate portions, one encoding
the connection weights for the What neural module
and the other one the connection weights for the
Where module, is reproduced and therefore is subject
to random genetic mutations. Imagine that a favor-
able genetic mutation changes the What portion of
the genotype resulting in an improved performance
of the What neural module. If this is the only genetic
mutation affecting the particular genotype, the global
performance of the individual will improve, the in-
dividual will be more likely to reproduce, and the
favorable mutation will be retained in the population.
However, consider the case in which a favorable mu-
tation falls on the What portion of the individual’s
genotype and at the same time an unfavorable muta-
tion falls on the Where portion of the same genotype.
Now there is a problem. The selection process may
be unable to “see” the advantageous mutation. If the

overall fitness effect of both mutations is deleterious,
the chromosome with the beneficial mutation will be
eliminated by natural selection. Hence, if the rate and
magnitude of deleterious mutations is high enough it
may prevent the adaptation of a character, in this case
the What task (Fig. 4).

A direct test of our interpretation of our results in
terms of genetic linkage consists in eliminating ge-
netic linkage and evaluating the performance of the
two tasks separately. We have conducted a new set of
simulations in which the genetic algorithm is used to
evolve two separate populations of individuals, one in
which each individual has to solve only the What task
and the other one with individuals that have to solve
only the Where task. As we have already noted above,
when one uses the backpropagation learning algorithm
there is no interference between the two tasks (in mod-
ular architectures) because the connection weights of
the What neural module are adjusted only on the ba-
sis of the error on the What task, and similarly for the
Where task. We have recreated these conditions with
the genetic algorithm by setting up two distinct pop-
ulations. The genotype of one population encodes the
connection weights only for the What neural module
and the individuals in this population reproduce only
on the basis of their performance on the What task, and
the same is true for the other population with respect
to the Where task. Since each population is evaluated
only for one task genetic interference within the same
genotype is impossible.

In other words, we have realized two distinct sim-
ulations. In one simulation the population has the
neural architecture which has been shown to be ap-
propriate for the What task (25 input units, 14 hidden
units, 9 output units) and the fitness formula reflects
an individual’s performance only on the What task,
while in the other simulation the population has a
neural architecture which is appropriate for the Where
task (25 inputs units, 4 hidden units, 9 output units)
and the fitness formula captures only an individual’s
performance on this task. In these circumstances there
is no genetic interference between the two tasks and
the genetic algorithm is able to evolve the connection
weights appropriate for both the Where and the What
tasks. The fitness for the “two populations” condition,
that is, the sum of the fitness of the What population
and the fitness of the Where population, is near zero
(zero error in both tasks) (Fig. 5).
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Fig. 4. Genetic interference. Conflicting mutations (one favorable and the other one unfavorable) can fall on separate portions of the
genotype encoding distinct neural modules, thereby hindering the efficiency of the selection process.

Fig. 5. Average fitness (error) across 50.000 generations when the genotype encodes both the Where and What tasks (single population)
and when it encodes either one or the other of the two tasks (two populations). (The fitness for the “two populations” condition is the
sum of the fitness of the What population and the fitness of the Where population.)
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Another test of our interpretation of our results in
terms of genetic linkage consists in manipulating the
mutation rate. If our interpretation is correct we ex-
pect that increasing the mutation rate should lead to
greater unfavorable consequences. In fact, given that
mutations tend to be generally unfavorable, increas-
ing the mutation rate should lead to a decrease of the
probability that their total effect in both modules will
be positive. To test this prediction we have run another
set of simulations in which we have systematically in-
creased the mutation rate from a value of 0.0016% to
a value of 10% in different simulations, both for pop-
ulations in which an individual has to perform both
the What and Where tasks and for separate popula-
tions in which individuals perform only one of the two
tasks.

The results of these simulations are shown inFig. 6.
For both conditions there is an increase in fitness
when mutation rates increase from a very low value
of 0.0016% to a value of 0.3%. With a mutation rate

Fig. 6. Average fitness at the end of evolution for populations with increasing mutations rates when the genotype encodes both the Where
and What tasks (single population) and when it encodes either one or the other of the two tasks (two populations). (The fitness for the
“two populations” condition is the sum of the fitness of the What population and the fitness of the Where population.)

of 0.3% both tasks are solved in both conditions. Be-
yond this value, however, the equilibrium fitness de-
creases. What is interesting for our purposes is that,
while the fitness is identical in the two conditions with
very low mutation rates, the decrease in fitness beyond
the threshold mutation rate of 0.3% is much greater
for populations in which the What and Where neu-
ral modules are both encoded in the same genotype
than in populations in which an individual’s geno-
type encodes either only the What module or only
the Where module. This seems to support our inter-
pretation of our results in terms of genetic interfer-
ence. When two distinct genetic modules, underlying
two distinct neural modules and two distinct tasks,
are present in the same genotype, genetic mutations
can result in a more adapted module for one task
but at the same time they can produce a less adapted
module for the other task, and the probability that
this will happen increases with increasing mutation
rates.
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4. Can genetic interference be explained by the
fact that the what task is more difficult than the
where task?

As Rueckl et al. (1989)note, and as is confirmed
by the results of all our simulations, an individual that
must solve both the What and Where tasks must not
only solve two tasks simultaneously in response to
the same input but it must solve two tasks that differ
in complexity or difficulty. For reasons discussed in
Rueckl et al., the What task is a more complex or
difficult task than the Where task. A consequence of
this fact is that, if the conditions allow for the acqui-
sition of both tasks, both tasks are acquired equally
well, but if neural interference (in nonmodular ar-
chitectures) or genetic interference (the connection
weights of the two neural modules are encoded in
the same genotype) make it impossible to adequately
solve both tasks, it is the more difficult What task
which suffers. In other words, at the end of the simu-
lation the neural networks are able to solve the Where
task (the error for this task is near zero) but not

Fig. 7. Separate plotting of fitness curves for the Where and the What tasks in the modular architecture. (Same data of the higher curve
in Fig. 3).

the What task (the error for the What task remains
substantial).

The differential difficulty of the two tasks manifests
itself in the fact that the easier Where task is acquired
(evolved or learned) first and it rather quickly reaches
almost perfect performance. When it is time to ac-
quire the more difficult What task, however, it turns
out to be impossible to reach perfect performance in
the later acquired What task. Many simulations using
the backpropagation algorithm have shown that neural
networks exhibit what is sometimes called the “age of
acquisition” effect: at the end of the simulation per-
formance on tasks that are learned earlier than other
tasks is better than performance on later acquired tasks
(Ellis and Lambon Ralph, 2000; Smith et al., in press).
This “age of acquisition” effect is observed also in our
simulations in which populations of neural networks
evolve the ability to solve the What and Where tasks,
as can be seen by plotting separately the fitness curves
for the Where and the What tasks in the modular ar-
chitecture (Fig. 7). The Where task is acquired earlier
than the What task in these evolving populations in
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the sense that the error on the Where task goes down
more rapidly (in the early generations) than the er-
ror on the What task. If we look at which individuals
are selected for reproduction at various evolutionary
stages, we see that in the early generations individuals
are selected for reproduction in terms of their error in
the Where task while their error in the What task is
ignored. Only when, in the later generations, error in
the Where task is so low that differences among in-
dividuals in this error become negligible, the error on
the What task becomes the criterion on the basis of
which individuals are selected for reproduction. But
at this point it is too late for acquiring the What task
sufficiently well and at the end of evolution the error
on the What task remains higher that the error on the
Where task.

One might argue that genetic interference is re-
stricted to cases in which one task is acquired before
another task because one task is easier than the other
task. To test this hypothesis we have conducted two
further sets of simulations.

One way to re-establish a parity between the What
and Where tasks is to assign more adaptive value to
the more difficult What task than to the easier Where
task. The What task remains an intrinsically more dif-
ficult task than the Where task but if we arbitrarily de-
cide that the What task is more important in terms of
reproductive chances than the Where task, this greater
adaptive importance of the What task may compensate
for its greater difficulty and both tasks may be acquired
together and equally well. In the new situation the ten-
dency of evolution to concentrate on the easier Where
task in the early evolutionary stages would be compen-
sated by the need to pay attention from the beginning
to the What task which is more difficult than the Where
task but is also more important for reproduction.

To change the relative fitness contribution of the
Where and What tasks we have modified the fitness
formula used to select the individuals for reproduction.
In the fitness formula used sofar the error in the Where
task is simply added to the error in the What task to
yield the total error. This total error, with the minus
sign, represents the fitness of an individual which de-
cides whether or not the individual is one of the 20 re-
producing individuals. In a new set of simulations we
have changed the fitness formula to give more weight
to the error in the What task compared to the weight of
the error in the Where task. The new fitness formula

is the following:

total fitness= (5 × What fitness) + (Where fitness)

With the new fitness formula the What task, even
if it is more difficult than the Where task, becomes
more important (in fact, five times more important) in
deciding which individuals are selected for reproduc-
tion. In fact, the results of our simulations show that
evolution first concentrates on the What task until high
levels of performance in the What task are reached.
However, when, later on, evolution turns to the Where
task it is too late to learn the Where task (Fig. 8).

It appears then that a sort of “loss of plasticity”
prevents evolution from reaching good levels of per-
formance in the Where task when the What task has
been learned first. The situation is similar to that of the
preceding simulations, but reversed. In the preceding
simulations the two tasks were equivalent in terms
of importance for reproduction but, since the Where
task is intrinsically easier than the What task, the
Where task was acquired first and then it was too late
for acquiring the What task equally well. In the new
simulations, since the What task has become much
more important than the Where task from the point
of view of reproductive chances, even if it is more
difficult than the Where task it is acquired earlier than
the Where task so that later in evolution it becomes
impossible to reach adequate levels of performance
in the Where task.

The simulation just described seems to show that
“age of acquisition” is a critical factor in evolution and
not only in learning. A more balanced solution for the
problem of accomplishing both the What and Where
tasks can be obtained if the more difficult What task
is given more adaptive weight than the easier Where
task but not too much more adaptive weight. In fact,
the results of another simulation in which we adopt
the following fitness formula:

total fitness= (3.5 × What fitness) + (Where fitness)

show that we can obtain a more balanced increase in
fitness for both the What and Where tasks from the
beginning of evolution. (The value of 3.5 was chosen
because it reflects the ratio between 14 What hidden
units and 4 Where hidden units.) However, even if the
What and Where tasks are acquired almost together,
genetic interference prevents the reaching of a satis-
factory terminal error on both tasks (Fig. 9).
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Fig. 8. Average fitness across 50.000 generations separately for the What and Where tasks when the What task is acquired earlier than the
Where task because, by manipulating the fitness formula, the What task has become adaptively more important than the Where task.

Fig. 9. Average fitness across 50.000 generations separately for the What and Where tasks when both tasks evolve almost together because,
by manipulating the fitness formula, the greater adaptive value of the What task compensates for the greater difficulty of the What task
compared to the Where task.
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Fig. 10. Average fitness across 50.000 generations in a population that has to solve two Where tasks compared with a population that has
to solve a single Where task. (Notice that the fitness in this figure is scaled differently from the other figures to show the small differences
among the curves).

Fig. 11. Average fitness across 50.000 generations in a population that has to solve two What tasks compared with a population that has
to solve a single What task.
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A more direct demonstration that genetic interfer-
ence is a general phenomenon and is not restricted
to cases in which different tasks, because of their
different difficulty or for other reasons, are acquired
at different evolutionary stages, can be obtained with
an even simpler manipulation of our simulation sce-
nario. We have conducted another set of simulations
in which an organism has to solve two tasks but the
two tasks are identical. In other words, in one popu-
lation organisms must solve the Where task twice in
response to the same input and in another population
the organisms must solve twice the What task. In
the twice/Where population the network architecture
includes two neural modules, each with 4 hidden
units, and two separate sets of Where output units.
The same for the twice/What population, with two
identical What neural modules with 14 hidden units
each. The fitness of an individual is based on the sum
of the two Where errors or the two What errors.

Notice that in the new simulations genetic interfer-
ence can occur because inherited genotypes encode
two separate sets of connection weights, one for each
of the two identical Where or What modules. How-
ever, since the two tasks that must be evolved in each
population are by definition of identical difficulty, the
different nature (difficulty) of the two tasks cannot be
invoked to explain the effects of genetic interference.
The results of these simulations show that, even when
the two tasks that must be solved are of identical diffi-
culty and both tasks evolve together, genetic interfer-
ence hinders evolution (Figs. 10 and 11).

5. Can sexual reproduction solve the problem of
genetic interference?

In all simulations described so far reproduction is
asexual: an offspring inherits the genotype of its single
parent. If reproduction is asexual, genetic interference
can operate undisturbed. The offspring’s genotype
is the same genotype of its single parent, except for
mutations. If conflicting mutations fall on distinct ge-
netic modules, evolution is hindered. However, sexual
reproduction can make a difference. In sexual re-
production portions of the genotype of one parent
are recombined with portions of the genotype of the
other parent. This can allow the recombination, in
the offspring’s genotype, of portions of genotypes

which have all been favorably mutated, and reduce
the negative consequences of genetic linkage. If this
is true, this can contribute to explaining the evolution-
ary advantage of recombination since recombination
reduces the negative effects of linkage and make it
possible to evolve more complex organisms that are
capable of multiple tasks.

To test this hypothesis we have changed the repro-
ductive mechanism of our populations from asexual
to sexual. In all our simulations the encoding in the
genotype of the connection weights for modular net-
works is as follows. The genotype is a sequence of 8
segments.

• Segment 1: bias weights for Where hidden units (4).
• Segment 2: bias weights for What hidden units (14).
• Segment 3: bias weights for Where output units (9).
• Segment 4: bias weights for What output units (9).
• Segment 5: connection weights between input units

and Where hidden units (100).
• Segment 6: connection weights between input units

and What hidden units (350).
• Segment 7: connection weights between Where hid-

den units and Where output units (36).
• Segment 8: connection weights between What hid-

den units and What output units (126).

In sexual reproduction the sequence of segments
of the two genotypes selected for reproduction is cut
at some randomly selected but corresponding place
and two complementary pieces of the two genotypes
are recombined together to produce the offspring’s
genotype. The 20 individuals with highest fitness in
each generation are selected for reproduction. For
each of these 20 individuals we randomly select 5
sexual partners among the remaining 19 individuals
and the individual generates a single offspring with
each partner. (Notice that during sexual recombina-
tion two genetic portions from the same parent can
be recombined together.)

The sexually reproducing population performs sig-
nificantly better than the asexual population (Fig. 12).
The results of the simulations show that sexual repro-
duction limits, even if it does not completely eliminate
(compareFigs. 5 and 12), the negative consequences
of genetic linkage.

If reproduction is asexual and conflicting mutations
occur in the same genotype, favorable and unfavor-
able mutations are necessarily linked together and
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Fig. 12. Sexual reproduction leads to a greater efficiency of the evolutionary process by limiting the negative consequences of genetic
linkage.

there is no way to retain the favorable mutations
while eliminating the unfavorable mutations. Instead,
this is exactly what sexual reproduction makes pos-
sible. In sexually reproducing organisms the sexual
recombination of portions of different genotypes al-
lows pulling apart portions of the same genotype on
which conflicting mutations have operated and putting
together, in the offspring’s genotype, portions of dif-
ferent genotypes in which there are no conflicting
mutations. Sexual reproduction can also facilitate the
elimination of negative mutations. If two portions of
genotypes that have both been changed by unfavorable
mutations are recombined together in the same geno-
type, the new genotype will more likely be eliminated
from the population (seeFutuyma, 1998, p. 610).

6. Genetic interference, a new consequence of
linkage?

We conclude from the results described above that
genetic interference is caused by the linkage between

advantageous and deleterious mutations. There are a
number of well understood negative consequences of
genetic linkage believed to contribute to the prevalence
of sexual species, especially among higher organisms.
Examples are the degeneration of the genotype due to
the accumulation of deleterious mutations, i.e. Mullers
ratchet (Felsenstein, 1974; Haigh, 1978), and the in-
terference between the selection of advantageous mu-
tations (“speed limit” of adaptation;De Visser et al.,
1999; Waxman and Peck, 1999). We thus have to ask
whether the phenomenon described here is different
from other consequences of genetic linkage.

There is one distinguishing feature of our model
that differs from any other model of genetic linkage. In
our model the two phenotypic characters measure the
functional performance of two different tasks or func-
tions. In all models we are aware of there is no distinc-
tion of different functions. Either the model only talks
about genotypes and their fitness (Felsenstein, 1974;
Haigh, 1978) or different phenotypic characters are
modelled with their fitness (Wagner and Gabriel, 1990;
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Waxman and Peck, 1999). The fact that our model ex-
plicitly refers to different functions rather than just fit-
ness or quantitative characters in general is significant
because interference may tend to occur when one of
the tasks is already optimised (age of acquisition ef-
fect). Genetic interference is thus not a consequence
of the co-occurrence of advantageous and disadvanta-
geous mutations per se, but mutations affecting differ-
ent functions. Below we propose a simple model of
why we think this is important.

Most models of quantitative genetic characters do
not impose limits to the possible character states. They
are assumed to be points on the real number line be-
tween plus and minus infinity. In contrast, functional
performance in the context of our model is measured
on a closed interval. The task is either performed not
at all, or perfectly, or to some degree in between.
There is no further improvement possible beyond al-
ways correctly identifying the location or identity of
the object in the Where or What tasks. The probability
of advantageous and deleterious mutations, however,
can not remain constant across the range of character
values. If task performance is perfect, all mutations
have to be either neutral or deleterious. Assuming that
neutrality is not exceptionally high for genotypes with
perfect performance of, say, task A, the probability of
deleterious mutations to task A has to increase as task
A approaches its optimum. From this it follows that as
task A improves, the probability of an advantageous
mutation for task B to co-occur with a deleterious
mutation for task A is increasing. Depending on the
distributions of deleterious mutations for the opti-
mised task A and advantageous mutations for task
B, the probability that a haplotype has an improved
fitness may become very small. Once that happens,
task B cannot be improved anymore, unless the link-
age between the deleterious mutations for task A and
the advantageous mutations for task B is broken, as
for instance by recombination or in the simulations
where two separate populations evolve the two tasks.

The form of genetic interference explained above
requires that mutation frequency is high enough such
that an advantageous mutation gets associated with a
deleterious mutation in the other task before it reaches
fixation. This is shown by the fact that genetic in-
terference occurs only above a critical mutation rate
(Fig. 6). In addition it seems to be necessary that the
joint distribution of advantageous and deleterious mu-

tations is such that the combined effect of them is un-
likely to lead to positive selection coefficients when
one of the tasks is optimised. This requires informa-
tion about the distribution of these effects, and thus is
not predicable from first principles of population ge-
netics alone. Consequently it is not possible to predict
the critical mutation rate without extensive analysis of
the mutational effect distributions.

One may argue that this explanation of genetic in-
terference is suspect since it depends on the assump-
tion of a closed interval of character values, rather
than an open scale of possible character states. The
reason is that any closed interval can be mapped onto
the real number line with limits plus and minus infin-
ity. This is true but does not affect the explanation for
genetic interference put forward above. The reason
is that any such transformation will also affect the
mutational effect distribution and thus the rationale
put forward above would not change. As the average
genotype would assume larger character values on the
new scale, the probability of deleterious mutations
would still increase, since this property needs to be
unaffected by the scale transformation. We thus think
that the model sketched above is scale independent.

In summary, genetic interference as describe here
is a phenomenon that requires well defined functional
tasks with more or less independent contributions to
fitness and it is thus a phenomenon different from
the effect of deleterious pleiotropic effects. We con-
clude that genetic interference is a new population ge-
netic mechanism that may contribute to the genetic
and adaptive advantages of sexual reproduction.

7. Discussion

In the introduction of this paper we have asked the
question “What does it take to evolve behaviorally
complex organisms?”, that is, organisms whose adap-
tive pattern requires the accomplishment of many
different tasks with independent contributions to fit-
ness. If our simulation results have captured essential
properties of biological evolution, then the following
principles may have relevance to biological evolvabil-
ity and they may allow us to propose some answers
to this question. The evolvability of behaviorally
complex organisms may favour genotypes with the
following properties.
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1. Since the accomplishment of many different tasks
by the same organism requires modular neural
networks to avoid neural interference, the geno-
type for complex organisms must encode modular
neural networks. In our simulations the network
architecture is entirely encoded in the genotype
and it is already there at birth. In real organisms the
modular network architecture can develop during
an individual’s lifetime as a result of an interaction
between inherited genetic information and experi-
ence. (For a general discussion on the origin of evo-
lutionary and developmental modules seeWagner
et al., in press; Calabretta and Parisi, in press).

2. Genotypes that encode modular neural networks
are subject to genetic interference due to genetic
linkage. We have defined genetic interference as
the possibility that favorable mutations can fall
on some genetic module encoded in the geno-
type while unfavorable mutations fall on another
genetic module of the same genotype. These con-
flicting mutations can reduce the efficiency of the
selection process.

3. Genetic interference is a phenomenon that is not
restricted to multiple tasks which are of different
difficulty and therefore evolve sequentially rather
than simultaneously, with the easy tasks being
solved first and the more difficult tasks later on in
evolution. Genetic interference is a more general
phenomenon which occurs when the genotype en-
codes multiple separate modules underlying tasks
which can be either identical or different, with
either the same or different difficulty. From this
we conclude that this phenomenon is different
from other effects of linkage on the evolution like
Muller’s ratchet or selective interference among
various advantageous mutations.

4. Sexual reproduction can reduce the negative effects
of genetic linkage by allowing the decoupling of
portions of genotypes affected by favorable and un-
favorable mutations and the recombining together
of genetic segments in new genotypes. In this way
sexual reproduction can find new genotypes that in-
clude only favorable mutations or only unfavorable
mutations and this may increase the general effi-
ciency of the evolutionary selection process. Notice
that this can contribute to explaining the prevalence
of sexual reproduction in higher organisms and the
observed fact that sexually reproducing populations

tend to have higher mutation rates than asexually
reproducing populations (Maynard-Smith, 1978).

A number of negative consequences of genetic
linkage have been show to exist. These include ge-
netic deterioration due to the accumulation of mildly
deleterious mutations, also called Muller’s ratchet
(Felsenstein, 1974), and the slowdown of adaptive
evolution because adaptive mutations that appear si-
multaneously in a population compete with each other
(Crow and Kimura, 1965; De Visser et al., 1999).
Lenski and collaborators (De Visser et al., 1999)
called the latter phenomenon “adaptive speed limits”.
To our knowledge it has not been suggested that ge-
netic linkage can completely prevent the adaptation
of a character due to linkage with deleterious muta-
tions affecting another character. We thus suggest that
the form of genetic interference reported here may
represent a new form of genetic constraint associated
with genetic linkage. This effect is potentially more
serious than either Muller’s ratchet or “adaptive speed
limits.” Muller’s ratchet is a slow process that only af-
fects the long term stability of an asexual population.
Adaptive speed limits are only relevant as long as the
population is in adaptive non-equilibrium. Genetic in-
terference as demonstrated here has immediate fitness
consequences since it permanently prevents access to
the fitness optimum. On the other hand, a sexually
reproducing population would be able to approach the
optimum to a higher degree and would thus experience
a direct and permanent fitness advantage. One has
to note, however, that this genetic interference effect
needs both genetic linkage and high mutation rates.

One should also point out, however, that sexual re-
production may be unable to completely solve the
problem of genetic interference. Behaviorally complex
organisms such as human beings have to solve a large
number of different tasks, not just two tasks as in the
What and Where simulations. This implies that their
genotypes will consist in a large number of genetic
modules each encoding a different neural module. This
may create so many possibilities of genetic interfer-
ence with its negative consequences on evolution that
sexual reproduction may be unable to block these neg-
ative consequences with its recombinatory power. A
possible implication is that this may provide a possible
explanation for the evolutionary advantage of learning.
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Another implication of our simulations is that the
results that have been obtained may contribute to ex-
plaining why the behavior of simple organisms tends
to be genetically inherited whereas more complex
organisms exhibit many behaviors that are learned
during life. Simplicity/complexity in organisms can
be defined in terms of number of different tasks. An
organism is simple if its adaptive pattern requires
the execution of a limited number of different tasks.
An organism is complex if to survive and reproduce
the organism must be able to execute many different
tasks. While simple organisms tend to have nonmod-
ular nervous systems, the need to avoid neural inter-
ference requires that the nervous system of a complex
organism be modularized. The existence of separate
modules for distinct tasks makes it possible to adjust
the connection weights of each module without in-
terfering with other modules and therefore with other
tasks.

But why highly modular nervous systems tend to
rely on learning during life as the mechanism for find-
ing the appropriate weights for the different modules
instead of entrusting evolution with the task of finding
those weights? In other words, why are the connection
weights of the highly modular nervous systems of
complex organisms learned rather than genetically in-
herited, whereas in simpler organisms the connection
weights of their nervous system can be genetically
inherited?Elman et al. (1996)have suggested that
the neural architecture of nervous systems is (largely)
genetically inherited whereas the connection weights
of the inherited architecture are (mostly) learned dur-
ing life. The results of our simulations lend support
to this proposal with respect to the highly modular-
ized nervous system of complex organisms that must
be able to execute many different tasks. In previous
research (Di Ferdinando et al., 2001) we have shown
that the best solution for neural networks that must
be able to execute both the What and the Where tasks
is to have evolution take care of finding the appro-
priate modular architecture for these two tasks and to
have learning during life solve the problem of finding
the appropriate connection weights for the inherited
architecture. The results of the present simulations
provide further arguments for Elman et al.’s proposal
and explain why the solution found in Di Ferdinando
et al.’s simulations for the What and Where tasks
may be the most appropriate one.

If one were to entrust evolution with both the task
of finding the appropriate network architecture and the
task of finding the appropriate weights for the archi-
tecture, one would encounter the problem of genetic
interference. Entrusting evolution with the task of find-
ing the appropriate modular architecture and learning
with the task of finding the appropriate weights for
the inherited modular architecture solves the problem.
Unlike evolution that relies on a single, global measure
of an individual’s performance, i.e. the individual’s
fitness, learning can rely on separate measures of the
individual’s distinct performances on different tasks.
When the individual is executing some particular task,
the individual is informed by its experience on how
good is its performance on that particular task and
this information (e.g. the teaching input in the back-
propagation learning procedure) can be used by the
individual’s neural network to modify the connection
weights of the particular module which is responsi-
ble for the current task, with no consequences for the
connection weights of other modules.

The problems, hypotheses, and simulation results
discussed in the paper can be relevant for understand-
ing the evolvability of behaviorally complex organ-
isms but also for designing artificial systems with
practical uses using evolutionary principles. Practical
systems such as autonomous robots may need to be
“behaviorally complex”, that is, they need to be able
to process the input data in a number of different
ways and to execute a variety of different tasks in re-
sponse to the input. In such cases one has to confront
all the problems discussed in this paper: modularity
in the control mechanism, genetic interference, sexual
or asexual reproduction, the mutation rate factor, the
fitness formula factor, and the optimal assignment of
acquisition processes to either evolution or learning.
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