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Abstract. We present an "ab initio" method that tries to determine the tertiary
structure of unknown proteins by modelling the folding process without using
potentials extracted from known protein structures. We have been able to obtain
appropriate matrices of folding potentials, i.e. 'forces' able to drive the folding
process to produce correct tertiary structures, using a genetic algorithm. Some
initial simulations that try to simulate the folding process of a fragment of the
crambin that results in an alpha-helix, have yielded good results. We discuss
some general implications of an Artificial Life approach to protein folding
which makes an attempt at simulating the actual folding process rather than just
trying to predict its final result.

1  Introduction

The prediction of the three-dimensional structure of proteins is a great challenge both
for the difficulty of the task and for the importance of the problem. While
computational approaches appear to be natural candidates to solve it, optimization
techniques that try to predict the result of the folding process by ignoring the
specificity of the process itself (Qian & Sejnowski, 1988; Fariselli et al., 1993) have
produced limited results. We claim that approaches in the spirit of Artificial Life
(Alife) that try to reproduce, even if in extremely simplified ways, the natural
processes as they actually occur could be more fruitful.

The protein folding problem presents many similarities with the kind of problems
that have been investigated in the Alife literature in the last few years. Proteins, like
the simple artificial creatures studied by several researchers in this field (Parisi et al.,
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1990; Wilson, 1991; Taylor & Jefferson, 1994), are physical entities that have their
own structure, which interact with an external environment (the solution), and which
are made of sub-components which interact among themselves (the amino acids). In
addition, proteins "behave" by folding into a stable structure and such "behaviour"
depends on the interaction among the sub-components of the protein itself and
between these sub-components and the external environment. Finally, as in most Alife
models, to each individual protein corresponds a given fragment of DNA and the
mapping between the genetic information and the final stable three-dimensional
structure of the protein is very complex and non-linear (Langton, 1992). We will ask
some interesting questions about the similarities/differences between a low-level
mapping process such as protein folding and the overall developmental process of the
organism.

2  The Protein Folding Problem

Many researchers have tried to predict the three-dimensional structure of proteins on
the only basis of the amino acid sequence. The attempt has been defined as trying to
decipher the second half of the genetic code (Gierasch & King, 1990). Success in this
area would be the starting point for new research directions with promising results and
possible applications in many fields (biology, genetics, drug-design, etc.).

Proteins chemically consist of the sequencing of structural units which are amino
acids: each protein is constructed with the same twenty amino acids which are
arranged according to a unique and well defined order. Each protein differs from any
other in the number of amino acids linked together (generally between 50 and 3000)
and the sequence in which the various amino acids occur. The amino acids are linked
to each other by the peptide bond to form a typical linear polypeptide chain. The
polypeptide backbone is a repetition of the basic unit common to all amino acids.
What changes is the side-chain which is characteristic for each one of the twenty
amino acids and is different in shape, bulk and chemical reactivity.

The protein structure can be discussed in terms of three levels of complexity. The
primary structure refers simply to the linear amino acid sequence. The secondary
structure describes the presence in the protein of regular local structure (alpha-helix
and beta-sheets), built with segments of the protein chain. Finally, the tertiary structure
represents the real three-dimensional structure of the entire protein. Thanks to the
possibility of alternating the twenty amino acids, proteins differ in amino acid
sequence (primary structure) and therefore in three-dimensional structure (tertiary
structure). In other words, the primary structure of a protein, as it is codified exactly in
DNA, contains all the information to determine the three-dimensional structure, on
which the function of that protein finally depends. The proteins are necessary
macromolecules for the normal deployment of almost all biological processes, but for
this to happen it is necessary that the proteins, at the end of a folding process, assume
their characteristic spatial structure, which varies from protein to protein. In fact,
either during or after ribosomal biosynthesis of a protein as a linear chain of amino
acids, the chain folds up rapidly until it assumes a stable and functional three-
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dimensional structure. A linear or randomly folded chain would not be biologically
active.

During the folding process, amino acid chains can adopt an astronomical number
of conformations: it would not be feasible for any protein to try out all of its
conformations on a practical time scale. Nevertheless, proteins are observed to fold in
10-1-10-3 seconds both in vivo and in vitro. The evident conclusion is that proteins do
not fold by sampling all possible conformations randomly until the one with the lowest
free energy is encountered. Instead, for the folding process to take place on a short
time scale, it must be directed in some way which is yet unclear (Creighton, 1993).

On one hand, molecular biology methods have allowed us to identify the amino
acid sequence of over 30,000 proteins (Swiss-Prot Data Bank; Bairoch & Boeckmann,
1992). On the other hand, by means of X-ray crystallography and nuclear magnetic
resonance spectroscopy (NMR), we have been able to identify the high-resolution
structure of only over 1,300 of them (Brookhaven Data Bank; Bernstein et al., 1977).
In the next few years the gap is expected to increase due to the great mass of data
originated from the Human Genome Project.

3  Computational Approaches to Protein Folding

Currently there is an increasing interest in the field of computational approaches to
protein folding. As Wodak and Rooman (1993) claim, this appears to be due to
several factors:

(a) experimental mutagenesis studies have demonstrated that the overall fold of a
protein is much more tolerant to sequence modification (Sondek & Shortle, 1990);

(b) analyses of known three-dimensional structures have revealed structural
similarity for proteins with different functions (Farber & Petsko, 1990; Kabsch et al.,
1990);

(c) the number of known high-resolution protein structures has significantly
increased allowing computational models to lie on more solid grounds;

(d) there is an widening gap between the increase in known protein sequences and
the lack of information about the structure and function of most of them;

(e) finally, new computational approaches have been developed (Rumelhart &
McClelland, 1986; Holland, 1975) that appear to be promising for the protein folding
problem and computational power has increased significantly as well.

We will review some of the most significant attempts in this direction and then we
will describe our own model.

3.1  Extracting Knowledge-based Potentials

Several researchers have used computational models to design pseudo-energy
functions that represent a reduced description of detailed atomic force fields. These
pseudo-energy functions or potentials are usually expressed as a sum of several terms
and mostly ignore side-chain atomic details.

Examples of such potentials are:
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(a) Residue-specific secondary structure propensities (i.e. the tendency of a given
residue to fold in a helix, beta sheet or random coil structure; Rost et al. ,1994);

(b) Residue-residue potentials (i.e. the tendency of a given residue to end-up close
to another one; Maiorov & Crippen, 1992);

(c) Hydrophobicity (tendency of a given residue to interact with water; Casari &
Sippl, 1992);

(d) Phi-psi backbone angle probabilities (the probability that two subsequent
amino acids can assume a certain relative position; Rooman et al., 1991).

These pseudo-energy function potentials can be derived from known protein
tertiary structures by using different computational methods (Statistics, Monte Carlo,
Neural Networks, Genetic Algorithm).

The way in which statistics is used to extract potentials is straightforward: the
probabilities of observing the parameter of interest are computed and then normalised
to correct for sample bias and finally translated into scores (e.g. Bryant & Lawrence,
1993).

Neural networks, given their ability to classify noisy stimuli and generalize to new
ones, have also been used to predict the secondary structure of proteins (e.g. Rost &
Sander, 1994).

Powerful optimization methods can also be used. Maiorov and Crippen (1992),
for example, used an optimization procedure to extract the residue-residue potentials.
They derived the strengths of individual contacts starting with non-correct values and
then changing such values so that the potential energy of any native structure in the
training set would be lower than the potential of any alternative conformation
generated from segments of known protein structures.

The extracted function potentials can in turn be used in order to build models
which are able to predict the second or the tertiary structure of other sequences (see
next paragraph). In other cases, potential extraction and prediction of tertiary structure
of unknown sequences can be realized at the same time using a single model.

3.2  Application of Knowledge-based Potentials to Prediction of Folded
Structures

The availability of knowledge-based potentials allows us to go beyond the classical
approaches based on sequence alignment for predicting secondary and tertiary
structure. The main idea is that the extracted potentials can be used to choose between
alternative predicted structures by measuring which of them results in lower energy
value (e.g. which of them best conforms to the known residue-structure propensity,
residue-propensity, hydrophobicity, and virtually to any known potential). In other
words, the knowledge based potentials that are extracted from known protein
structures can be used to evaluate predicted protein structures.

There are two ways of using knowledge-based potential to predict the tertiary
structure of sequences, a hybrid method that combines the classical alignment
procedure with the use of potentials and a pure method that use the potential in order
to derive the tertiary structure directly from the sequence.



6

The first approach involves scanning a library of sequences and corresponding
known structure motifs in search of compatible sequence-structure combinations, i.e.
those which correspond to structures which best conform to the known potentials (see
for example Sippl & Weitckus, 1992). In this case potentials are used to choose the
best combination of chain folds present in the databases. The combinations of folds
that best align with the given sequence and best conform to potentials are selected.
This method produces good performance for proteins closely related to those present
in the used database but, as the distance increases, performance progressively
deteriorates and it becomes unreliable when the sequence identity is lower than 30%
(Wodak & Rooman, 1993).

The second approach based only on potentials, by not restricting the space of
possible tertiary structure to a known limited set, is much more demanding because it
is necessary to assess the value of the potentials of a huge number of possible
alternative configurations from which the correct fold needs to be singled out. In this
approach an initial wrong structure configuration is chosen and then the structure is
progressively modified for a given number of trials until the final configuration, which
represents the predicted structure, is obtained. In each trial the actual structure is
evaluated by using potentials in order to preserve good modifications (i.e. changes that
result in a better configuration from the extracted potential point of view) and to reject
bad modifications. The search in the conformation space of a given protein can be
implemented by using different algorithms. In particular Monte Carlo (e.g. Godzik et
al., 1992) and genetic algorithms (e.g. Dandekar & Argos, 1994) have been used.

In the model of Dandekar and Argos (1994), an initial population of different
hypothetical three-dimensional structures for a given sequence are generated. Each
individual of the population consists of a vector of dihedral  and  rotation angles which
in turn determines the folding of the main chain of the corresponding protein.
Individuals are evaluated according to a set of extracted potentials (secondary
structure propensities, presence of hydrogen bonds, hydrophobicity), and ad-hoc
criteria (undesired overlapping of C atoms) by determining if and how much a given
structure conforms to each potential or criterion. The sum of  all these positive and
negative contributions constitute the individual's fitness that determines which
individuals are allowed to reproduce by generating copies of their vectors with the
addition of mutations and combinations between two 'parent' vectors. By repeating this
process for a certain number of generations, three-dimensional structures which have
better and better fitness and closely resemble the actual folded structure may be
obtained.

4  Emulating the Folding Process by Evolving Abstract
Folding Potentials

We think that while using potentials extracted by folded sequences may be adequate in
choosing between alternative final structures as is necessary in hybrid approaches that
combine folded sub-parts of known protein structures, it may be less useful in "pure"
or "ab initio" approaches in which the final folded state is progressively determined
through successive modifications starting from the initial amino acid sequence. In fact,
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the type of conformations that a protein assumes during the folding process may differ
from the final folded conformation (Creighton, 1978). In other words, it may happen
that a structure, in order to reach its final stable state, is forced to pass through a state
which, even if it does not resemble the final folded state, is crucial in order to reach
the final state (cf. the controversy about this point  between Creighton (1992) and
Weissman & Kim (1992)). Dandekar and Argos (1994), for example, in order to limit
search space, restricted the dihedral and rotation angles to a set of 7 standard
conformations extracted from the topology of known folded proteins. However, it is
not known whether during the folding process significant different conformations of
angles occur.

In our own work, we used an "ab initio" method that does not use pre-extracted
potentials and that tries to determine the tertiary structure of unknown proteins by
modelling the folding process itself. In other words, we did not want only to predict
the final tertiary structure of proteins but we also wished to model the temporal
process of folding that results in such a structure. We are aware of the difficulty of the
task and of the fact that our results are very preliminary. But we believe that the
method can have some validity because a better understanding of the folding process
itself, even in the limited case of very short sequences, can have useful results.

For the present time we, as many others (e.g. Lau & Dill, 1990; Unger & Moult,
1993; Šali et al., 1994), have modelled the primary structure of proteins in an
extremely simplified way. Amino acid side-chains are represented as spheres
connected to the corresponding Cα of backbone with a link of fixed length (see Fig.
1); the backbone is represented as a chain of Cα atoms linked by pseudobonds
between the Cα atoms of successive amino acid residues (for a similar approach, cf.
Oldfield & Hubbard, 1994).

Fig. 1. Simulated protein at the beginning of the folding process.

The length of the link between the amino acid side-chain and the backbone is 25A
and the pseudobond between two succeeding Cα is 15A (which approximates the
average length in real proteins), but can slightly vary during the folding process.
Different amino acid side chains all have the same dimensions but can differ in the
way they interact with other amino acid side chains and possibly with other substances
(e.g. water, but we have not explored this possibility yet). Side chains (spheres) by
being attracted or repulsed by other side chains can move in the three-dimensional
space. However, in doing so, because of the physical links, amino acid side chains can
either (A) rotate around the backbone in the three dimensions modifying the angles
between their link and the backbone and/or (B) bend  the local portion of the
backbone (see Fig. 2).
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Fig. 2. A) A side-chain (sphere) rotating around the corresponding Cα. B)
Side-chains that bend the backbone by reciprocal attraction.

A matrix of 20 x 20 values, which were initially randomly specified, determine for
each amino acid how much it attracts or repulses other amino acids within a given
distance (100A). The attraction or repulsion force is a function of both the value
specified in the matrix and of the distance. The process starts with the backbone and
the amino acids aligned (see Figure 1) then, depending on the types of amino acids
and of the matrix of interaction forces, amino acids start to interact and as a
consequence move and fold the backbone. Amino acids are let free to interact for 100
steps. During each cycle, all the interaction forces between neighbouring amino acids
(spheres) are computed and then used to move and fold the structure. It is important to
notice that while at the beginning of the folding process only amino acids close in the
sequence are also close in the three-dimensional space and therefore interact, during
the folding process also amino acids distant in the sequence can end up close and start
to interact. As a consequence, the final folded structure is the result of the potential
interaction of all the amino acids that constitute the sequence.

The problem now is how to determine the matrix of interaction forces in order to
emulate the folding process. Once we have obtained a matrix able to fold primary
structures into the right tertiary structures we can use such a matrix to predict the
tertiary structure of unknown proteins by artificially folding them. For these reasons
we can call this matrix of 'forces' folding potentials, i.e. potentials that do not extract
regularities of known tertiary structures but instead represent 'forces' able to drive the
folding process in order to produce correct tertiary structures.

In order to determine such folding potentials we used a genetic algorithm
(Holland, 1975; Goldberg, 1989). We started with a population of 100 different
matrices of folding potentials randomly generated that represent Generation 0. We
then used these potentials to artificially fold proteins with known tertiary structures. In
this way we obtained 100 different tertiary structures. The similarity of such tertiary
structures with the known right tertiary structure was measured (see below) and used
to determine which are the best individuals, i.e. the folding potentials that result in the



9

best tertiary structures. The best 20 individuals were allowed to reproduce by
generating 5 offspring each that are copies of the parent matrix of folding rules with
the addition of mutations (i.e. random modifications of 10% of the folding potential
values). These 20x5 individuals will constitute Generation 1. The process is then
repeated for a certain number of generations. The folding potentials of each generation
will tend to differ from the previous generation for 2 reasons: because they are the
copies of the best individuals of the previous generation and because they receive
mutations. Mutations may produce better or less good offspring with respect to the
corresponding parents. However, selective reproduction will ensure that only
individuals that received good mutations will be able to reproduce.

The evaluation of tertiary structures can be realized in different ways. For each
residue segment one can measure the discrepancy of the alpha-carbon bend and
torsion angles (see Oldfield & Hubbard, 1994) between the real known tertiary
structure and the artificially folded structure produced by each individual matrix of
folding potentials. The sum of these discrepancies represent a measure of the error
produced by the corresponding folding potentials. Therefore the lower the error is, the
higher the probability will be that the corresponding matrix of folding potentials will
produce offspring. Alternatively, one can use the sum of discrepancies in distance
measured between all combinations of Cα atoms in the three-dimensional space. In our
first empirical attempts, the first method appeared to produce better results. In
addition, one should decide whether to consider only the discrepancies at the end of
the folding process (i.e. after 100 steps) or also as it is taking place.

g e n e r a t io n s

er
ro

r

3 5 0

4 0 0

4 5 0

5 0 0

5 5 0

6 0 0

6 5 0

1 5 1 1 0 1 1 5 1 2 0 1

Fig. 3. Discrepancies between simulated folded proteins across generations in
one of the most successful simulations. For each generation the error of the best
individual of the population is shown.

We decided to pay attention to the discrepancies as the folding process is taking
place but we weighted the discrepancies at the end of the folding process more in
order to force the evolutionary process to select potentials that result in stable folded
structures. Hence, the final evaluation of an individual is a weighted sum of the
discrepancies throughout the folding process.

In a first attempt to test this model we have tried to simulate the folding process of
a fragment of the crambin made of a sequence of 13 amino acids that result in an
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alpha-helix. We ran 10 simulations starting with different randomly generated folding
potentials. As Fig. 3 shows, the error, i.e. the discrepancy between artificially folded
structures and the real tertiary structure, progressively decreases across generations.

Fig. 4 shows six (not immediately) successive stages of the folding process
generated by the evolved potentials.

STEP 0                                                                  STEP 25

 
STEP 50                                                                 STEP 60

 
STEP 75                                                                 STEP 100

 

Fig. 4. Folding process of the best individual of the last generation of one of
the most successful simulations. Only the backbone, represented as a chain of
Cα atoms linked by pseudobonds,  is displayed. For space reasons only 6 of the
100 time steps are shown.
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 A tertiary structure close to the expected one is obtained. In addition, it is
interesting to note that in most of the simulations the tertiary structure stabilizes after a
certain number of folding steps. How early the folding process reaches a stable state
could be another component of the 'fitness formula' used to select folding potential
matrices for reproduction.

5  Discussion

Artificial Life is an attempt at understanding all biological phenomena through their
reproduction in artificial systems, e.g. computer simulations. More specifically,
Artificial Life simulates life phenomena at various levels of biological entities
(molecules, cells, organs, organisms, etc.) and tries to understand how phenomena at
one level are related to phenomena at other levels. At the same time, Artificial Life is
interested in determining similarities and differences in what happens at the various
biological levels.

Computational approaches to the protein folding problem are often interpreted as
alternative techniques for predicting the tertiary structure of proteins given their amino
acid sequence. There is no implication that one is modelling or simulating the actual
physico-chemical process that results in a given three-dimensional configuration
starting from a linear sequence of amino acids. An Alife approach to protein folding
suggests that one should try to model this process. The ability to predict the tertiary
structure of unknown proteins should come as a by-product of these modelling efforts.

Assuming that one is modelling the amino acid sequence-to-tertiary structure
mapping process, one can ask potentially useful questions about how this process is
related to other biological processes and to their causes. For example, we have used a
genetic algorithm to search for appropriate matrices of folding potentials that would
give us the correct tertiary structure given an amino acid sequence. The genetic
algorithm can be interpreted either as a search or optimization technique which is only
'inspired' by biological evolution or it can be taken to be a model of biological
evolution. For example, when the genetic algorithm is applied to populations of neural
networks, by using the genetic algorithm one may want to model the process of
evolutionary change in a population of nervous systems, or organisms, or behaviors,
etc., and to study such phenomena as the shape of evolutionary change (e.g. graduality
or punctuated equilibria), evolutionary divergence, speciation, etc. Now, we can ask:
When the genetic algorithm is applied to the protein folding problem, are we
modelling some actual process of evolution which has taken place (and is taking
place) at the molecular level and has shaped the mechanism that maps a linear amino
acid sequence into a three-dimensional structure? Can the population of folding
potential matrices be assimilated to a population of genotypes for neural networks?

The protein folding process can be viewed as a part of the larger process of
mapping from the genotype to the phenotype of an organism which is called
development. Can we find similarities between the process of protein folding which
results in the 'adult' three-dimensional shape of the protein and the process of
development which takes place during the developmental age of a multicellular
organism and which results in the adult, mature form of the individual? For example,
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at the level of the organism all the successive phenotypical forms that are realized
during development appear to be subject to an evaluation in terms of fitness. Is this the
case also for the successive spatial conformations that a sequence of amino acid
assumes before the final stable conformation? This problem is technically related to
the choice of the 'fitness formula' when one is applying the genetic algorithm to the
protein folding problem. We have adopted a fitness formula which takes into
consideration all intermediate conformations but evaluates them only in function of
their degree of approximation to the final conformation. Is this solution correct? We
have advanced the hypothesis that during the folding process 'odd' conformations may
appear that deviate from the final shape but are useful as stepping stones to arrive to
the final shape. In this case a more sophisticated fitness formula would be more
appropriate. (Notice that fitness formulae should not be necessarily decided by the
researcher but can be viewed as evolvable - or co-evolvable - traits as any other trait;
cf. Lund and Parisi, 1994). Although we cannot pretend that the intermediate states
that are observed in our simulations actually reproduce the real intermediate states
(Creighton, 1978), the novelty of our approach is that our model includes intermediate
states that are usually ignored in computational attempts at predicting final three-
dimensional protein structure.

In actual proteins the main force that drives the folding process appears to be
hydrophobicity (i.e. the aversion for water of nonpolar residues) while Van der Waals
interactions (i.e. interactions between dipoles), hydrogen bond interactions (i.e.
sharing of an hydrogen atom between two electronegative atoms), and electrostatics
interactions in general appear to play a secondary role (Dill, 1990). However, as Dill
states very clearly, driving forces are only half of the story. Another fundamental
component that determines the folding process appears to be a opposing forces, e.g.
the impossibility that two chain segments simultaneously occupy the same volume of
space. Because the folding process involves the collapse of the chain from a large
volume to a small one the role of this opposing force appears to be essential.

However, how the driving and the opposing forces produce the known three-
dimensional structures is a controversial matter. Dill (1990) claims that any driving
force, given the volume constraint (i.e. the fact that two elements cannot occupy the
same space) would produce a structure with helices and sheets with hydrophobic
interaction as the likely driving force. In fact, he claims that "there are very few
possible ways to configure a compact chain, and most of them involve helices and
sheets". In other words, he hypothesizes that the tertiary structure drives the secondary
structures and not vice versa. Computer simulations appear to support this hypothesis
because they show that the amount of secondary structure (helices and sheets)
increases as a chain becomes increasingly compact (Dill, 1990). However this
hypothesis is in contrast with NMR analysis which appear to suggest that "stable
secondary structure first forms the framework necessary for the subsequent formation
of the complete tertiary structure" (Udgaonkar & Baldwin, 1988). In addition, it
remains to be determined what is the role of the other forces and why is the native
structure unique given the fact that hydrophobicity cannot alone determine a unique
native structure.



13

We think that models that reproduce the folding process like the one we have
presented in this paper could shed some light on these issues. To pursue our objectives
we certainly need to complicate our model by simulating the solution and by allowing
the emergence of hydrophobic interactions between amino acids and the solution
itself. This could be done by using an additional matrix that specifies for each amino
acid the type and the strength of the hydrophobic interaction and by letting the genetic
algorithm select the values contained in the matrices. It would then be interesting to
observe which type of force will result as the dominant one in the simulation, in
particular if the hydrophobic forces outnumber in strength the forces between amino
acids.

We also claim that it might be misleading to try to predict the tertiary structures of
unknown proteins by using minimization energy techniques based on potentials
extracted by folded sequences. In fact, as we have observed, the type of conformations
that proteins assume during the folding process may differ from final folded
conformations. In addition, this approach requires that native conformations of
proteins are at global energy minima (Anfinsen, 1973). But, as Baker & Agard (1994)
have observed, "there are good reasons to think that the native states of proteins may
not be at global energy minima.....there may be large regions of conformational space
that are kinetically inaccessible in which a more stable state might exist". If this
hypothesis is true, all computational efforts which try to find the global minimum of a
specified potential function would be unable to predict the native state of proteins. We
think that our approach which is not based on minimization of energy but tries to
select a set of abstract forces which are able to induce the correct folding may avoid
this problem.
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