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Abstract The evolution of simulated robots with three
different architectures is studied in this article. We compare a
nonmodular feed-forward network, a hardwired modular,
and a duplication-based modular motor control network. We
conclude that both modular architectures outperform the
non-modular architecture, both in terms of rate of adaptation
as well as the level of adaptation achieved. The main
difference between the hardwired and duplication-based
modular architectures is that in the latter the modules
reached a much higher degree of functional specialization of
their motor control units with regard to high-level behavioral
functions. The hardwired architectures reach the same level
of performance, but have a more distributed assignment of
functional tasks to the motor control units. We conclude that
the mechanism through which functional specialization is
achieved is similar to the mechanism proposed for the
evolution of duplicated genes. It is found that the duplication
of multifunctional modules �rst leads to a change in the
regulation of the module, leading to a differentiation of the
functional context in which the module is used. Then the
module adapts to the new functional context. After this
second step the system is locked into a functionally
specialized state. We suggest that functional specialization
may be an evolutionary absorption state.

1 Introduction

Mathematical models have been rather successful in representing the population genetic
mechanisms of adaptation, molecular evolution, and speciation [4, 5, 10]. One major
class of evolutionary processes, however, has received relatively little attention from
theorists, that is, evolutionary innovation. Innovation is de�ned here as the origin of
new body parts and/or new body plans [16]. The process of innovation poses particular
challenges for mathematical modeling, because it involves the origin of new units that
are usually assumed to be invariant in the classical mathematical models of evolutionary
processes [21]. Here we demonstrate that the Arti�cial Life modeling approach can be a
powerful tool to investigate innovation processes because of the openness of Arti�cial
Life models.

Higher-level multicellular organisms are characterized by a high degree of differ-
entiation, where quasi-autonomous parts of the body are often dedicated to one or a
few major functions [22]. These parts have been called organs or homologues. Hence,
one of the most obvious trends in organismal evolution is the increase in the maximal
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Figure 1. The Khepera robot.

complexity of a clade [12]. Little is known, however, about the mechanisms that lead
to the origin of functionally specialized body parts.

In already published work [2, 3] we have shown that the duplication of functional
units leads to the evolutionary specialization of the duplicated units, similar to the
functional specialization of duplicated genes. This is in contrast to the evolution of
units which do not arise by duplication [17]. In this case the functional tasks tend to be
distributed among redundant units without any obvious division of function. However,
important questions which remain to be answered are why or how duplication leads to
functional specialization, and why the evolution of redundant units that are hardwired
in the system and that do not arise because of genetic duplication does not lead to
specialization. In the present article we review our previous results and we speci�cally
address this question.

The Arti�cial Life literature does not contain much work which addresses these kinds
of questions. However, relevant work includes Koza [11], who has used gene dupli-
cation in genetic programming, and Gruau [7], who has proposed a genetic encoding
scheme for neural networks based on the cellular duplication and differentiation pro-
cess. For an interesting discussion on how gene duplication supports modularity see
also Rotaru-Varga [19].

2 The Model

For a detailed description of the experimental setup we refer the reader to Calabretta
and colleagues [2, 3]. Here we summarize the model used in the simulations.

A population of neural networks [20] is evolutionarily trained to control a mobile
robot designed to keep an arena clear by picking up trash objects and releasing them
outside the arena. The “organism” is a miniature mobile robot (Khepera [15]; see
Figure 1), which is supported by two wheels that allow it to move in various directions
by regulating the speed of each wheel. In addition, the robot is provided with a gripper
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Figure 2. Architectures (a) and (b) are shown on the left and right sides, respectively. Architecture (a) is used in the
nonmodular population. Architecture (b) is the basic architecture used in the two modular populations (i.e., in both
the hardwired and duplication-based modular populations). The two populations differ in the type of modularity
that is added to the basic architecture. In the hardwired modular population two modules compete to gain control
of each of the four actuators in all individuals from the beginning of evolution. In the duplication-based modular
population the individuals of the initial generation have only one module for each motor, that is, they initially have
architecture (a). A second competing module may be added in individuals of successive generations as a result of the
duplication operator. Another difference is that in the � rst modular population, competing modules have different
random weights at the beginning, while in the second modular population, when a second competing module is
generated, the two competing modules have identical weights.

module with two degrees of freedom. The robot is also provided with eight infrared
proximity sensors and an optical barrier (OB) sensor on the gripper capable of detecting
the presence of an object between the two arms of the gripper. The environment is
a rectangular arena surrounded by walls containing 5 target cylindrical objects, which
are positioned randomly inside the arena. The evolutionary process is conducted only
in simulation in order to speed it up [13].

We compared the results obtained with modular and nonmodular neural network
architectures (see Figure 2). In both cases the robot has 7 sensory neurons and 4 motor
neurons. The �rst 6 sensory neurons are used to encode the activation level of the
corresponding 6 frontal sensors of Khepera (the two back sensors are ignored) and the
seventh sensory neuron is used to encode the OB light sensor on the gripper. On the
motor side the 4 neurons respectively codify for the speed of the left and right wheels
and for the triggering of the “object pick up” and “object release” procedures. The
logistic function is used to determine the activation of the motor neurons.

The nonmodular architecture (Figure 2, left) is a simple feed-forward network with 7
input units encoding the state of the 7 sensors and four output units encoding the state
of the 4 effectors. The input units are directly connected to the output units through
28 connection weights (plus 4 biases). This architecture is not divided into modules.
The other two architectures are modular ones and differ in the type of modularity that
enriches their architecture (Figure 2, right).

The architecture of the �rst modular population (hardwired modular architecture)
has 16 output units, which, at every time step, give 4 output values controlling the 4
previously described effectors. Four pairs of output neurons (represented by empty
circles) code for the speed of the left and right motors and for the triggering of the
“object pick-up” and “object release” procedures, respectively, and four pairs of selec-
tor neurons (represented by full circles) determine which of the two competing output
neurons have control over the corresponding effector at each time step (the competitor
with the more highly activated selector neuron gains control). Each module is com-
posed of two output neurons, the two corresponding biases, and 14 connections from
sensory neurons. The �rst output neuron determines the motor output when the mod-
ule has control, and the second output neuron (selector) competes with the selector
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Figure 3. Schematic representation of the genomes of the three architectures. (LM = genetic encoding for the
connection weights of the left motor; RM = right motor; PU= pick-up motor; RL = release motor. Genetic encoding
for selectors is not indicated).

neuron of the other corresponding module to determine which of the two modules has
control.

The architecture of the second modular population is called duplication-based modu-
lar architecture because, in this case, the modules are not hardwired in the architecture
from the beginning of evolution, but can be added during the evolutionary process.
Each module, as in the case of the hardwired architecture, consists of two output units
(one motor output unit and one selector unit) which receive connections from the 7
sensors. At the beginning of the evolutionary process there is only one module for each
of the four outputs, that is, the same module always controls the corresponding output.
However, during reproduction, modules may be duplicated (see below). Duplicated
modules, which are exactly the same when duplication takes place, can differentiate
across generations because of genetic mutations.

A genetic algorithm [8] was used to evolve the connection weights of all the neural
networks (Figure 3). In the nonmodular population the genotypes of the initial gener-
ation encode random values for the connection weights of the single modules of the
basic architecture: 32 (7£4 D28 plus 4 biases) connections. Since each weight value is
binarily encoded using 8 bits, the total genotype is a sequence of 32 £ 8 D256 bits. In
the hardwired modular population the genotype encodes the values for all the connec-
tion weights of the modular architecture. Since each module includes 7£2 connections
plus 2 biases and there are 8 modules, the total number of connection weights encoded
in the genotype is 128. The total genotype is a sequence of 128 £ 8 D 1024 bits. The
individuals of the �rst generation are assigned random values for these 1024 bits and
then the evolutionary process progressively �nds better and better genotypes on the
basis of the selective reproduction of the best individuals and the addition of random
mutations to the inherited genotypes. Each generation includes 100 individuals.

Each individual was allowed to “live” for 15 epochs, each epoch consisting of 200
input-output cycles or actions. At the beginning of each epoch the robot and the target
objects are randomly positioned in the arena. An epoch is terminated either after 200
actions or after the �rst object had been correctly released. Individuals were scored for
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their ability to perform the complete sequence of correct behaviors, that is, for their
ability to �nd and pick up objects, carry them to the edge of the arena, and release
them so that they fall outside the arena. However, in order to facilitate the emergence
of this ability individuals were also scored (although with a lower reward) for their
ability to pick up objects. At the end of life the 20 best individuals are selected for re-
production and each of these individuals generates 5 offspring, that is, new individuals
with the same genotype as their parent. Reproduction consists in generating copies of
an individual’s genotype encoding the network’s connection weights (we are assuming
nonsexual reproduction in haploid populations) with the addition of random changes
to some of the bits of the genotype sequence (genetic mutations; we did not use genetic
crossover) and, in the case of the duplication-based modular architecture, the dupli-
cation of a randomly selected neural module. Genetic mutations consist in changing
the value of about 10 bits in each genotype (1% mutation rate). The 20 £ 5 D 100
new individuals constitute the second generation. The process is repeated for 1000
generations.

In the duplication-based modular population the genotypes of the initial generation
encode random values for the connection weights of the single modules of the basic
architecture: 32 (7 £ 4 D 28 plus 4 biases) connections. However, since each of the 4
output units has associated with it a nonfunctional selector unit with its 7 connection
weights, the total number of connection weights encoded in the genotypes of the initial
generation is 64. Notice, however, that until the module happens to be duplicated this
selector unit remains completely nonfunctional and its associated connection weights
are subject to random drift only. The genotype of this second modular population has
4 additional “duplication genes” each associated with one of the 4 output units. When
one of these duplication genes is turned on by some mutation the gene duplicates its
corresponding module assigning to the duplicated module the same weight values as
the original module. The duplication genes cause a duplication with some probability
that we have varied in different simulations. We have used 3 different probabilities of
duplication: 0.02%, 0.03%, and 0.04%. (We did not test higher duplication probabilities
because with a 0.04% probability we already obtained performance levels comparable
to those obtained with the hardwired architecture). In the generation in which the
duplication of one of the modules takes place there is no possible change in behavior
since both the original and the duplicated module have the same connection weights.
However, subsequently random mutations acting on the modules’ connections weights
(both on those leading to the output unit and those leading to the selector unit of the
module) can progressively differentiate the two alternate modules.

In the present model the maximum number of duplicated modules allowed in the
case of the duplication-based modular architecture is one for each motor output, and
no module-deletion operator was used. As a result, the hardwired modular architec-
ture, already described in Nol� [17], is the most complex architecture that can possibly
evolve starting from architecture (a). However, the addition of modules during the
course of evolution (instead of right from the beginning) that are initially identical to
their competing module (instead of being completely unrelated) may produce quali-
tatively different results in the case of the hardwired and duplication-based modular
architectures, respectively.

3 Results

We have conducted several sets of simulations in which we compare (a) a simple non-
modular feed-forward neural network, (b) the hardwired modular architecture (i.e.,
a modular architecture that is predesigned as modular right from the beginning of
the simulation and remains �xed throughout the evolutionary process), and (c) the
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Figure 4. Average (a) and peak (p) performance of a population with nonmodular architecture (gray curve) and
of a population with hardwired modular architecture (black curve). Average of 10 different runs.

duplication-based modular architecture (i.e., a modular architecture that evolves start-
ing from a population of nonmodular ones as a result of gene duplication). In all
simulations we used a mutation rate of 1%, that is, 2% of the bits of the genotype ran-
domly selected were replaced by a new randomly selected value. We ran 10 simulations
for each of the 3 different architectures described above. Each simulation started with
populations of 100 networks with randomly assigned connection weights and lasted
1000 generations.

The hypothesis to be tested with these simulations is that modular architectures
which originate in genetic duplication favor the emergence of functional module spe-
cialization. Moreover, if this prediction is con�rmed, we would like to understand the
mechanisms by means of which functional specialization is realized.

Nol� [17] reported that hardwired modular architecture clearly outperformed non-
modular architecture in a garbage-collecting task. This is con�rmed by the results
shown in Figure 4 which gives the average and peak performance (respectively, the
average performance and the performance of the best individual in each generation)
for the nonmodular architecture and for the hardwired modular architecture. (Notice
that there is less computational power, that is, number of neurons and connections, in
the nonmodular architecture than in the modular architecture.)

We wanted, �rst of all, to know if a duplication-based modular architecture is just
as ef�cient in outperforming a nonmodular architecture as a hardwired modular archi-
tecture. Figure 5 gives the average and peak performance measures for nonmodular
architecture and for duplication-based architecture with a duplication rate of 0.04% (i.e.,
0.04% of the modules were duplicated per replication). In both conditions the perfor-
mance level increases until a plateau is reached. However, populations with modules
achieve a higher terminal performance level and need less time (fewer generations) to
reach it. More precisely, after about a hundred generations of overlapping performance
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Figure 5. Average and peak performance of populations with nonmodular architecture (gray curve) and of
populations with duplication-based modularity (black curve) with a duplication rate of 0.04%. Average of 10
different runs.

in the two conditions, populations with modules start to outperform populations with-
out modules and this difference is maintained until the end of the evolutionary process,
most obviously if we consider the performance of the best individual.

The hypothesis that modularity is implied in accomplishing this result can be in-
directly tested by varying the duplication rate in duplication-based modular network
simulations. Both average and peak performance decrease linearly with a decreased
duplication rate (0.04%, 0.03%, and 0.02%) (results not shown). Figure 6 shows the
results obtained with the duplication-based modular architecture for a duplication rate
of 0.02% and compares them with those for a nonmodular architecture: The advantage
of modular design is lost. This result shows the importance of the interaction between
mutation and duplication rate.

If we compare the performance obtained with hardwired modular architecture with
that obtained with duplication-based modular architecture, we see that the two popu-
lations do not differ in terms of overall performance except that performance growth is
slightly slower in the population with duplication-based modules (see Figure 7). This
difference can be explained by noting that in the case of duplication-based modular
architecture, some generations have to pass before module duplication can take place
and duplicated modules can differentiate between each other. Besides the compari-
son between the two modular architectures in terms of performance level, we were
interested in understanding whether there were differences between the two modular
architectures at other levels such as behavior (see [2]).

In his analysis of the role of neural modules in hardwired modular architecture, Nol�
[17] observes that it is impossible to �nd a direct correspondence between neural mod-
ules and resulting subbehaviors. In particular, by analyzing some evolved individuals
he �nds that both competing modules are used in all the phases of different subbehav-
iors: for instance, when the gripper is empty and the robot has to look for a target, or
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Figure 6. Average and peak performance measures of populations with nonmodular architecture (gray curve)
and of populationswith duplication-based modular architecture (black curve) with a duplication rate of 0.02%.
Average of 10 different runs.

when the gripper is carrying a target and the robot has to look for a wall; when the
robot is approaching a target, or when the robot is approaching a wall; when the robot
perceives something and has to disambiguate between walls and targets, or when the
robot does not perceive anything (see [17]).

These results demonstrate that although modularity is useful in producing complex
behaviors, one does not necessarily �nd a direct one-to-one correspondence between
modules and simpler subbehaviors. This lack of direct one-to-one mapping is not just
a matter of chance. By exploiting the interaction between the external environment
and the robot’s body and internal mechanisms, emergent forms of behavior can evolve
which allow simple control systems to produce complex forms of behavior [1, 17].

The fact that there is not a one-to-one correspondence between internal modules and
the various subbehaviors, however, does not necessarily imply that all internal modules
contribute to all different subbehaviors in the same way. Although each module can
contribute to the production of different overall behaviors, a single module or a group
of modules may be mainly involved in only one or a few subbehaviors. In other
words, modules can have a certain level of specialization. To illustrate this point, let
us consider Figure 8. Although the phenotypical entities P1, P2, and P3 all contribute
to the production of subbehavior B1, P2 has the main responsibility while P1 and P3
contribute in a less signi�cant way. Similarly P1 and P3 have the main responsibility in
producing subbehavior B2.

This kind of specialization may be an advantage, from an evolutionary point of view,
if different subbehaviors have different functions (i.e., if a single subbehavior or a group
of subbehaviors are primarily responsible for a single adaptive function as shown in
Figure 8). Let us consider the case of our garbage-collecting robot. The performance
of the robot depends on its ability to accomplish two sub-behaviors: collect objects
and release objects outside the arena. These two subbehaviors correspond to two
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Figure 7. Average (a) and peak (p) performance of populationwith hardwired modular architecture (gray curve)
and of population with duplication-based modular architecture (black curve) with a duplication rate of 0.04%.
Average of 10 different runs.

different functions in that they contribute rather independently to the overall �tness
of an individual. If internal structures (e.g., internal modules) are not specialized and
each of the two subbehaviors is the result of all modules, changes affecting a single
module will tend to affect all subbehaviors. On the other hand, if internal modules
are specialized, changes affecting a single module will tend to affect primarily one of
the two resulting behaviors. Once the population has converged to a local maximum
for most of its characters, genetic operators tend to have negative effects, on the aver-
age. This means that changes in genes which affect different characters will produce
negative effects on most of these characters. To produce an improvement, a variation
of a single gene should positively affect at least a single phenotypical character, but
not affect negatively all the other characters that are already optimized. As a conse-
quence, the probability that a change affecting a gene will produce a positive effect is
reduced with increased pleiotropy of that gene (i.e., by the number of phenotypical
characters affected by that gene). A good mapping therefore should reduce pleiotropic
effects among characters serving different functions. Independent functions, in other
words, should be coded as independently as possible so that improvements of each
function can be realized with minimal interference with other structures serving other
functions.

In the case of evolved individuals with hardwired modular architecture, we can
identify the level of specialization of internal modules by measuring the statistical re-
lationship (i.e., chi-square value) between single neural modules or a combination of
modules and individual subbehaviors (see [3]). The higher the chi-square value, the
higher the level of specialization of the neural modules. Table 1 shows the results of
such an analysis involving the following subbehaviors: (1) the ability to �nd and pick
up a target while avoiding walls, and (2) the ability to �nd a wall and correctly release
a target while avoiding other targets.
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Figure 8. Left: Organization of a system at the level of the phenotype (P1, P2, and P3 represent different subcompo-
nents of the phenotype, e.g. different modules of the control systems). Center: Organization of the corresponding
behavior (B1 and B2 represents two different sub-behaviors). Right: Functions of the whole behavior. The thickness
of the arrows indicates how important an entity is in determining another entity.

As can be seen in Table 1, there is a very high chi-square value between these
subbehaviors and neural modules in only 2 out of 10 runs of the experiment and the
relationship is statistically signi�cant in only 5 out of 10 runs. This means that an evo-
lutionary process based on selective reproduction and mutations does not necessarily
tend to converge on solutions in which neural modules are specialized but on solutions
in which all neural modules contribute to all subbehaviors.

Table 1. Evolved individualsof the experiments
with the hardwired modular architecture. Chi-
square values obtained by performing a linear
regression between the current subbehavior
(1 binary value) as the dependent variable and
the result of the arbitration between modules
(4 binary values) as the independent variable.
Data obtained by testing each individual for
500 cycles. Values in bold represent individuals
in which a signi�cant correlation was found.

11.135
4.679

425.927
2.747

21.556
439.391

16.647
2.348

29.078
27.081

78 Arti�cial Life Volume 6, Number 1



R. Calabretta, S. Nol�, D. Parisi, and G. P. Wagner Duplication of Modules

Table 2. Evolved individualsof the experiments
with the duplication-based modular architec-
ture. Chi-square values obtainedby performing
a linear regression between the current subbe-
havior (1 binary value) as the dependent vari-
able and the result of the arbitration between
modules (4 binary values) as the independent
variable. Data obtained by testing each indi-
vidual for 500 cycles. Values in bold represents
individuals in which a signi� cant correlation was
found.

368.662
246.374
495.961
218.359
190.511

55.947
55.246

296.993
32.334

321.769

Table 2 shows the same analysis for the simulations with duplication-based modular
architecture. A statistically signi�cant relationship between neural modules and the two
subbehaviors is observed in 10 out of 10 cases, that is, in all cases we see signi�cant
specialization of modules contributing to subbehaviors.

We might conclude that in duplication-based modular architecture, modules appear
to be more specialized in the speci�c subbehaviors mentioned above, while this seems
to be less true in hardwired modular architecture.

These results seem to support the model proposed by Hughes ([9]; see also [18])
which assumes that specialization might arise when genes serving multiple functions
are duplicated. After gene duplication, in fact, the genes are released from con�icting
functional demands and each copy can specialize in one of the different functions of
the ancestral gene (for a more detailed discussion see [3]). It should be noted that gene
duplication is only one of the factors that may lead to functional specialization (for a
discussion see [22]).

These results show that the evolutionary process may lead to a certain level of spe-
cialization under certain conditions. It should be noted, once again, that this does
not mean that there is a one-to-one correspondence between neural modules and
subbehaviors serving different adaptive functions, but only that there is some corre-
lation such that either a single internal entity or a group of internal entities is pri-
marily responsible for a single subbehavior while other entities play a less important
role.

Regarding the overall performance we did not observe signi�cant differences af-
ter 1000 generations between individuals with the duplication-based architecture and
individuals with the hardwired modular architecture. In other words, the functional
specialization of internal modules did not result in a larger adaptation capability. This
result appears to be in contrast with the assumption that individuals with specialized
internal structures have a higher level of evolvability (i.e., a greater probability to obtain
an improvement through random variations).

The fact that the two classes of individuals achieve about the same level of per-
formance, however, can be explained by considering that nonspecialized individuals
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already achieve close to optimal performances. Therefore, to determine if specialization
may lead to higher adaptation levels additional studies should be conducted.

In order to understand the mechanisms by which duplication of structural units favors
the specialization of modules we performed a winning lineage phylogenetic analysis
[14]. To perform such an analysis, it is necessary to take a best individual of the last
generation and trace back all the ancestors of this individual up to and including the �rst
generation. In this way, the entire lineage of the best individual of the last generation
can be reconstructed. In our simulation the lineage is constituted by a total of 1000
individuals, one for each generation.

Given our experimental setting, the individual representing the winning lineage in
the �rst generation has a nonmodular architecture and random connection weights.
The winning lineage individuals of succeeding generations will progressively change
their architecture because of gene duplication and mutation.

We �rst focused on what happened in the generations immediately following module
duplication. Speci�cally, we wanted to investigate how the occurrence of duplication
facilitates the emergence of modular specialization. We expected to �nd that functional
specialization emerges in generations soon after module duplication. We present the
results of an analysis of the winning lineage in a typical simulation (i.e., the same
simulation we considered in Calabretta et al. [2] for behavioral analysis), in which the
results were particularly clear.

The best individual of the last generation (i.e., generation 1000) has all four output
modules duplicated and specialized. The �rst module (i.e., PU) duplicated in generation
30, the second one (i.e., RL) in generation 52, the third one (i.e., RM) in generation 91,
and the fourth one (i.e., LM) in generation 329. Below we report what happened after
the last duplication, that is, the duplication of the LM module.

After duplication of the LM module takes place, the two copies of the LM module
are exactly the same. As a consequence, there is no difference in performance as a
function of whether one competing module or the other one controls the robot’s left
wheel. In our experimental setting, a single randomly chosen module always controls
the left wheel, while the other one is nonfunctional. In the next generation, gener-
ation 330, only two connection weight values were mutated. Both mutations affect
the regulatory part of the module (i.e., the selector; see Table 3), and, as a conse-
quence of these two mutations, we �nd that the two competing LM modules almost
always alternate depending on whether the robot is carrying an object or not. In other
words, the two competing modules seem to be specialized in terms of the behavior
they control. In fact, this specialization is cryptic because the structural part (i.e., the
output unit) is exactly the same in the two competing modules. As a demonstration
of that, it is suf�cient to exchange the mutated connection weight values between
the two competing modules. If one does this, exactly the same performance is ob-
tained.

In the individual of the next generation, generation 331, something interesting hap-
pens. If we look at the connection weights of this individual we �nd that it carries
one mutation on the structural part of the module. (There is also another mutation
affecting the regulatory part of the module, but this mutation is neutral. See Table 3.)
This mutation strongly affects the performance of the individual in the sense that indi-
vidual performance increases as a result of the mutation. We performed two tests: (a)
inserting the value of the preceding generation (i.e., 4.04, see Table 3) and (b) inserting
the mutated value in the other competing module. In both cases, individual �tness
decreases. We conclude that both the regulatory and the structural parts of the module
are really specialized for the behavioral unit.

It is important to add that in the succeeding generation two other mutations take
place in the regulatory part of the module. As a consequence, the specialization of

80 Arti�cial Life Volume 6, Number 1



R. Calabretta, S. Nol�, D. Parisi, and G. P. Wagner Duplication of Modules

Table 3. Connection weights for the two competing modules controlling
the LM motor in a typical winning lineage with duplication-based modular
architecture (generations 329–332). Values which are mutated with respect
to the previous generation are highlighted.

s
t

generation 329 330 331 332
r
u

1st weight 2.78 2.78 2.78 2.8
c
t

2.78 2.78 2.78 2.8
u
r

2nd weight 2.39 2.39 2.39 2.4
a
l

2.39 2.39 2.39 2.4
3rd weight 3.1 3.1 3.1 3.1

p
a

3.1 3.1 3.1 3.1
r
t

4th weight 4.04 4.04 4.04 4.04

4.04 4.04 4.67 4.7
o
f

5th weight 2.71 2.71 2.71 2.7
2.71 2.71 2.71 2.7

m
o

6th weight 6.55 6.55 6.55 6.5
d
u

6.55 6.55 6.55 6.5
l
e

7th weight ¡0.75 ¡0.75 ¡0.75 ¡0.7

¡0.75 ¡0.75 ¡0.75 ¡0.7
bias ¡2.78 ¡2.78 ¡2.78 ¡2.8

¡2.78 ¡2.78 ¡2.78 ¡2.8

r
e

1st weight 7.02 7.02 7.02 7
g
u

7.02 7.02 7.02 7
l
a

2nd weight ¡0.2 ¡0.2 ¡0.2 ¡0.2
t
o

¡0.2 ¡0.2 ¡0.2 ¡0.2
r
y

3rd weight 5.76 5.76 5.76 5.8
5.76 5.92 5.92 5.9

p
a

4th weight ¡4.27 ¡4.27 ¡3.96 ¡4
r
t

¡4.27 ¡9.29 ¡9.29 ¡9.3

5th weight 2.71 2.71 2.71 2.7
o
f

2.71 2.71 2.71 2.7
6th weight 4.75 4.75 4.75 4.7

m
o

4.75 4.75 4.75 4.7

d
u

7th weight ¡9.06 ¡9.06 ¡9.06 ¡9.1

l
e

¡9.06 ¡9.06 ¡9.06 1

bias ¡8.27 ¡8.27 ¡8.27 ¡8.3
¡8.27 ¡8.27 ¡8.27 ¡8.6
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the regulatory part of the module is completed. Now the switching between the two
competing modules takes place every time the robot takes or releases an object.

These results suggest an evolutionary scenario that favors the emergence of func-
tional modularity. If there are two structural units which compete for control over the
motor output and if there is a mechanism which can switch between the competing
structural units, the evolution of functional specialization is more likely. This situation
arises readily if the two units originate by means of duplication.

In fact, a mutation affecting the regulatory part which determines the switching is
neutral from a phenotypical point of view. But it can create an evolutionary context
favorable to subsequent mutations of the structural part of the module that may result
in �tness increases, that is, it can prime the subsequent adaptation.

In evolutionary biology parlance, the mutation affecting the regulatory part of one
of the two competing modules can act as an exaptation, that is, a trait not built as an
adaptation at all, but one allowing later adaptations for some function [6].

4 Discussion

In this paper we have compared three scenarios for the evolution of a somewhat com-
plex behavior in a population of arti�cial organisms. The behavior of these “organisms”
is controlled by simple feed-forward networks of three types: (a) nonmodular neural
networks; (b) neural networks with an unchanging hardwired modularity; (c) neural
networks in which modularity can evolve as a functional specialization of duplicated
structural modules. Modules are portions of a neural network that specialize in con-
trolling the network’s output as a function of the particular input.

The results we have obtained can be summarized in the following way. (1) Modu-
lar architectures, both hardwired and duplication-based ones, produce better results in
terms of both speed of evolution and steady-state �nal level of the behavioral perfor-
mance than nonmodular architectures. (2) There is no difference between hardwired
and duplication-based modular architectures in terms of overall performance. (3) There
is some evidence that modular architectures which originated by duplication tend to
favor functional module specialization more than hardwired modular architectures.

A possible explanation of this last result can be found in the different effects of
mutations on the hardwired and the duplication-based modular architectures. In both
cases mutations can fall either on the regulatory portion of the structural unit (controlling
which module determines the network’s output in response to some input) or on the
structural portion (controlling the type of output a module generates in response to the
input).

In the evolved duplication-based architecture, however, a mutation can also simply
produce a duplication of a module. Initially the duplication does not produce any
adaptive consequences because the two duplicated modules are perfectly identical.
Then a new mutation falling on the regulatory portion of the genetic material can give
one module control of the output for some inputs and the other module control of
the output for other inputs. This second step is also neutral because the two structural
units are still identical in their structural parts. Then, a further mutation falling on the
structural part can lead to module specialization and, therefore, possibly to adaptive
consequences.

This is the sequence we have reconstructed in our simulations. In other words, in
the duplication-based architecture the switching between competing modules is initially
neutral from a phenotypic point of view but creates favorable conditions for (a) the
continuing utilization of the two modules, (b) the selective retention of a favorable
mutation falling on the structural part of one module, and (c) a larger probability
of module specialization. In contrast, in Nol�’s hardwired architecture this type of
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switching (i.e., one that is initially neutral from a phenotypic point of view) is less likely
to occur because alternative modules are different from each other from the beginning.
This may lead to constraints on the evolutionary accessibility of functionally specialized
modules.

5 Conclusions

We conclude that, in our simulations, the duplication of partially adapted modules
greatly facilitates evolution of functional specialization. The mechanism identi�ed in-
cludes, �rst, the acquisition of a neutral change in the regulation of the duplicated
modules and, second, the adaptation of the modules to the new functional context.
This mechanism leads to a co-adaptation between the regulatory and the functional
parts of the modules that lock the system into the functionally specialized state. It is
thus possible that the prevalence of functional differentiation of body parts in higher
organisms is caused by the fact that functional specialization of parts can be an evolu-
tionary absorption state, as long as the function performed by the module contributes
to �tness. We found no evidence that functionally specialized systems have inherently
better performance or are more evolvable than nonspecialized modular systems in our
simulations.
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