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Abstract. Reinforcement learning (RL) is a fundamental process by
which organisms learn to achieve a goal from interactions with the envi-
ronment. We use Arti�cial Life techniques to derive (near-)optimal neu-
ronal learning rules in a simple neural network model of decision-making
in simulated bumblebees foraging for nectar. The resulting networks ex-
hibit eÆcient RL, allowing the bees to respond rapidly to changes in
reward contingencies. Furthermore, the evolved synaptic plasticity dy-
namics give rise to varying exploration/exploitation levels from which
emerge the well-documented foraging strategies of risk aversion and prob-
ability matching. These are shown to be a direct result of optimal RL,
providing a biologically founded, parsimonious and novel explanation for
these behaviors. Our results are corroborated by a rigorous mathematical
analysis and by experiments in mobile robots.

1 Introduction

Reinforcement learning (RL) is a process by which organisms learn from their
interactions with the environment to achieve a goal [14]. In RL, learning is con-
tingent upon a scalar reinforcement signal which only provides evaluative infor-
mation about how good an action is in a certain situation. Behavioral research
indicates that RL is a fundamental means by which experience changes behavior
in both vertebrates and invertebrates, as most natural learning processes are
conducted in the absence of an explicit supervisory stimulus. A computational
understanding of neuronal reinforcement learning is a necessary step towards
an understanding of brain functions, and can contribute widely to the design
of autonomous arti�cial learning agents. RL has attracted ample attention in
computational neuroscience, yet a fundamental question regarding the under-
lying mechanism has not been suÆciently addressed, namely, what are the
optimal learning rules for maximizing reward in RL? In this paper, we
use Arti�cial-life (Alife) techniques to derive the optimal neuronal learning



rules that give rise to eÆcient RL in uncertain environments. We fur-
ther investigate the behavioral strategies which emerge from optimal RL.

RL has been demonstrated and studied extensively in foraging bees. Real [2]
showed that when foraging for nectar in a �eld of blue and yellow arti�cial 
ow-
ers, bumblebees exhibit eÆcient RL, rapidly switching their preference for 
ower
type when reward contingencies were switched between the 
owers. The bees also
manifested risk averse behavior: in a situation in which blue 
owers contained
2�l sucrose solution, and yellow 
owers contained 6�l sucrose in 1

3
of the 
owers,

and zero in the rest, 85% of the bees' visits were to the blue constant-rewarding

owers, although the mean return from both 
ower types was identical. Such risk-
averse behavior has also been demonstrated elsewhere [1], and has traditionally
been accounted for by hypothesizing the existence of a subjective non-linear con-
cave "utility function" for nectar [6]. Risk averse behavior is also prominent in
humans, and is an important choice strategy, well-studied in economics
and game-theory, although its biological basis is not yet �rmly established.

A foraging bee deals with a rapidly changing environment - parameters such
as the weather, and competition a�ect the availability of rewards from di�erent
kinds of 
owers. This implies an "armed-bandit" type scenario, in which the bee
collects food and information simultaneously. As a result there exists a tradeo�
between exploitation and exploration, as the bee's actions directly e�ect the
"training examples" which it will encounter through the learning process. A
notable strategy by which bumblebees (and other animals) optimize choice in
such situations is probability matching. When faced with 
owers o�ering similar
rewards but with di�erent probabilities, bees match their choice behavior to the
reward probabilities of the 
owers [16]. This seemingly "irrational" behavior with
respect to optimization of reward intake is explained as an Evolutionary Stable
Strategy (ESS) for the individual forager when faced with competitors [10], as it
produces an Ideal Free Distribution (IFD) in which the average intake of food is
the same at all food sources. Using Alife techniques, Seth evolved battery-driven
agents competing for two di�erent battery re�ll sources, and showed that indeed
matching behavior emerges only in a multi-agent scenario [3].

In a previous neural network (NN) model, Montague et al. [13] simulated bee
foraging in a 3D arena of blue and yellow 
owers, based on a neurocontroller
modelled after an identi�ed interneuron in the honeybee suboesophogeal gan-
glion. This neuron's activity represents the reward value of gustatory stimuli,
and similar to Dopaminergic neurons in the Basal Ganglia, is activated by un-
predicted rewards [12]. In their model this neuron is modeled as a linear unit P ,
which receives visual information regarding changes in the percentages of yel-
low, blue and neutral colors in the visual �eld, and computes a prediction error.
According to P 's output the bee decides whether to continue 
ying in the same
direction, or to change direction randomly. Upon landing, a reward is received
according to the subjective utility of the nectar content of the chosen 
ower [6],
and the synaptic weights of the networks are updated according to a special
anti-Hebbian-like learning rule. As a result, the values of the weights come to
represent the expected rewards from each 
ower type.



While this model replicates Real's foraging results and provides a basic and
simple NN architecture to solve RL tasks, many aspects of the model, �rst and
foremost the handcrafted synaptic learning rule, are arbitrarily speci�ed and
their optimality with respect to RL questionable. Towards this end, we use a
generalized and parameterized version of this model in order to evolve optimal
synaptic learning rules for RL (with respect to maximizing nectar intake) using
a genetic algorithm. In contrast to common Alife applications which involve NNs
with evolvable synaptic weights or architectures [4, 5, 15], we set upon the task
of evolving the network's neuronal learning rules. Previous attempts at evolv-
ing neuronal learning rules have used heavily constrained network dynamics and
very limited sets of learning rules [7, 9]. We de�ne a general framework for evolv-
ing learning rules, which essentially encompasses all heterosynaptic Hebbian
learning rules, along with other characteristics of the learning dynamics. Via
the genetic algorithm we select bees based solely on their nectar-gathering ability
in a changing environment. The uncertainty of the environment ensures that ef-
�cient foraging can only be a result of learning throughout lifetime, thus eÆcient
learning rules are evolved.

In the following section we describe the model and the evolutionary dynamics.
Section 3 describes the results of our simulations, and the evolution of RL. In
section 4 we analyze the foraging behavior resulting from the learning dynamics,
and �nd that when tested in new environments, our Alife creatures manifest
risk aversion and probability matching behaviors. Although this behavior was
not selected for, we rigorously prove that these strategies emerge directly from
optimal RL. Section 5 describes a minirobot implementation of the evolved RL
model, and we conclude with a discussion of the results in section 6.

2 The Model

A simulated bee-agent 
ies above a 3D patch of 60x60 randomly scattered blue
and yellow 
owers. A bee's life consists of 100 trials. In each trial the bee starts
its descent from a height of 10 units, and advances in steps of 1 unit that can be
taken in any downward direction (360Æ horizontal, 90Æ vertical). The bee views
the world through a cyclopean eye (10Æ cone view), and in each timestep decides
whether to maintain the current heading direction or to reorient randomly, based
on the visual input. Upon landing the bee consumes any available nectar in
one timestep, and another trial begins. The evolutionary goal (the �tness
criterion) is to maximize nectar intake.

In the neural network controlling the bee's 
ight (Fig. 1a), which is an exten-
sion of Montague et al's network [13], three modules ("regular", "di�erential"
and "reward") contribute their input via synaptic weights, to a linear neuron
P . The regular input module reports the percentage of the bee's �eld of view
�lled with yellow [Xy(t)], blue [Xb(t)] and neutral [Xn(t)]. The di�erential input
module reports temporal di�erences of these percentages [Xi(t) � Xi(t � 1)].
The reward module reports the actual amount of nectar received from a 
ower
[R(t)] in the nectar-consuming timestep (in this timestep it is also assumed that



Fig. 1. (a) The bee's neural network controller. (b) The bee's action func-
tion. Probability of reorienting direction of 
ight as a function of P (t) for di�erent
values of parameters m; b. (c) The genome sequence of the simulated bee.

there is no new input [Xi(t) = 0]), and zero during 
ight. Note that we do not
incorporate any form of utility function with respect to the reward. Thus
P 's continuous-valued output is:

P (t) = R(t) +
X

i2regular

WiXi(t) +
X

i2di�erential

Wi[Xi(t)�Xi(t� 1)]: (1)

The bee's action is determined according to the output P (t) using Montague et
al's probabilistic action function [6, 13] (Fig. 1b):

p(change direction) = 1=[1 + exp(m � P (t) + b)] (2)

During the bee's "lifetime" the synaptic weights of the regular and di�erential
input modules are modi�ed via a heterosynaptic Hebb learning rule of the form:

�Wi = �(AXi(t)P (t) +BXi(t) + CP (t) +D); (3)

where � is a global learning rate parameter, Xi(t) and P (t) are the presynaptic
and the postsynaptic values respectively, Wi their connection weight, and A-D
are real-valued evolvable parameters. In addition, learning in one module can
be dependent on another module (dashed arrows in Fig. 1a), such that if mod-
ule Z depends on module Y , Z's synaptic weights will be updated according to
equation (3) only if module Y 's respective neurons have �red (if it is not depen-
dent, the weights will be updated on every timestep). Thus the bee's "brain" is
capable of a non-trivial axo-axonic gating of synaptic plasticity.

The simulated bee's genome (Fig. 1c) consists of a string of 28 genes, each
representing a parameter governing the network architecture and or its learning
dynamics. Seven boolean genes determine whether each synapse in the network



exists or not; 6 real-valued genes (range [-1,1]) specify the initial weights of
the regular and di�erential module synapses (the synaptic weight of the reward
module is clamped to 1, e�ectively scaling the other synapses); and two real-
valued genes specify the action-function parameters m (range [5,45]) and b (range
[0,5]). Thirteen remaining genes specify the learning dynamics: The regular and
di�erential modules each have a learning rule speci�ed by 4 real-valued genes
(parameters A-D of equation (3), range [-1,1]); The global learning rate � is
speci�ed by a real valued gene; and four boolean genes specify dependencies of
the visual input modules on each of the other two modules.

The optimal gene values were determined using a genetic algorithm. A �rst
generation of bees was produced by randomly generating 100 genome strings.
Each bee performed 100 trials independently (no competition) and received a
�tness score according to the average amount of nectar gathered per trial. To
form the next generation, �fty pairs of parents were chosen (with returns) with
a bee's �tness specifying the probability of it being chosen as a parent. Each two
parents gave birth to two o�springs, which inherited their parents' genome (with
no Lamarkian inheritence of learned weights) after performing recombination
(genewise, p = 0:25) and adding random mutations. Mutations were performed
by adding a uniformly distributed value in the range of [-0.1,0.1] to 2% of the real-
valued genes, and reversing 0.2% of the boolean genes. One hundred o�springs
were created, these once again tested in the 
ower �eld. This process continued
for a large number of generations.

3 Evolution of Reinforcement Learning

To promote the evolution of eÆcient learning rules, bees were evolved in an
"uncertain" world: In each generation one of the two 
ower types was randomly
assigned as a constant-yielding high-mean 
ower (containing 0:7�l nectar), and
the other a variable-yielding low-mean 
ower (1�l nectar in 1

5
th of the 
owers

and zero otherwise). The reward contingencies were switched between the two

ower types in a randomly chosen trial during the second or third quarter of
each bee's life. Evolutionary runs under this condition typically show one of
two types of �tness curves: runs in which reward-dependent choice behavior is
successfully evolved are characterized by two distinct evolutionary jumps (Fig.
2a), while unsuccessful runs (which produce behavior that is not dependent on
rewards) show only the �rst jump.

About half of the evolutionary runs were successful. Figure 2b shows the mean
value of several of the bees' genes in the last generation of each of �ve successful
runs. The second evolutionary jump characteristic of successful runs is due to the
almost simultaneous evolution of 8 genes governing the network structure and
learning dependencies. All successful networks have a speci�c architecture which
includes the reward, di�erential blue and di�erential yellow synapses, as well
as a dependency of the di�erential module on the reward module, conditioning
modi�cation of these synapses on the presence of reward. Thus we �nd that in
our framework, only a network architecture similar to that used by Montague et



Fig. 2. (a) Typical �tness scores of a successful run of 500 generations. Solid line -
mean �tness, dotted line - maximum �tness in each generation. (b) Mean value of
several genes in the last generation of �ve successful runs. Each sub�gure shows the
mean value of one gene in the last generation of �ve runs.(c,d) Preference for blue

owers for two di�erent bees from the last generation of a successful run, averaged
over 40 test bouts, each consisting of 100 trials. Blue is the initial constant-rewarding
high-mean 
ower. Reward contingencies are switched at trial 50.

al. [13] can produce above-random foraging behavior, supporting their choice as
an optimal one. However, our optimized networks utilize a heterosynaptic
learning rule di�erent from that used by Montague et al., which gives
rise to several important behavioral strategies.

Bees from the last generation of a successful run show a marked preference
for the high-mean rewarding 
ower, with a rapid transition of preferences after
the reward contingencies are switched between the 
ower types. An examination
of the behavior of the evolved bees, reveals that there are individual di�erences
between the bees in their degree of exploitation of the high-rewarding 
owers
versus exploration of the other 
owers (Fig. 2c,d). This can be explained by an
interesting relationship between the micro-level Hebb rule coeÆcients
and the exploration/exploitation tradeo� characteristic of the macro-
level behavior: In the common case when upon landing the bee sees only one
color, the synaptic update rule for the corresponding di�erential synapse is

�Wi(t+ 1) = �[(A � C) � (�1) � [R(t)�Wi(t)] + (D �B)] (4)

leading to an e�ective monosynaptic coeÆcient of (A-C), and a general weight
decay coeÆcient (D-B). For the other di�erential synapses, the learning rule is:

�Wj(t+ 1) = �(C � [R(t)�Wi(t)] +D): (5)



Thus, positive C and D values result in spontaneous strengthening of competing
synapses, leading to an exploration-inclined bee. Negative values will result in
a declining tendency to visit competing 
ower types, leading to exploitation-
inclined behavior.

4 Emergence of Risk Aversion and Probability Matching

A prominent strategy exhibited by the evolved bees is risk-aversion. Figure 3a
shows the choice behavior of previously evolved bees, tested in a new environ-
ment where the mean rewards of the two kinds of 
owers are identical. Although
the situation does not call for any 
ower preference, the bees prefer the constant-
rewarding 
ower. Furthermore, bees evolved in an environment containing two
constant-rewarding 
owers yielding di�erent rewards, also exhibit risk-averse be-
havior when tested in a variable-rewarding 
ower scenario, thus risk- aversion is
not a consequence of evolution in an uncertain environment per se. In contradis-
tinction to the conventional explanations of risk aversion, our model does not
include a non-linear utility function. What hence brings about risk-averse
behavior in our model? Corroborating previous numerical results [11], we
prove analytically that this foraging strategy is a direct consequence of Hebbian
learning dynamics in an armed-bandit-like RL situation.

The bee's stochastic foraging decisions can be formally modeled as choices
between a variable-rewarding (v) and a constant-rewarding (c) 
ower, based on
memory (synaptic weights). We consider the bee's long-term choice dynamics
as a sequence of N cycles, each choice of (v) beginning a cycle. The frequency
fv of visits to (v) can be determined (via Birkho�'s Ergodic theorem) by the
expected number of visits to (c) in a cycle, and is

fv =
1

E[1=pv(Wv ;Wc)]
(6)

where pv(Wv ;Wc) is the probability of choosing (v) in a trial in which the synap-
tic weights are Wv and Wc for the variable and the constant 
ower respectively.
We show that if pv(Wv ;Wc) is a positive increasing choice function such that
[1=pv(Wv ;Wc)] is convex, the risk order property of Wv(�) always implies risk-
averse behavior, i.e. for every learning rate, the frequency of visits to the
variable 
ower (fv) is less than 50%, further decreasing under higher
learning rates. Our simulations corroborate this analytical result (Fig. 3b).

In essence, due to the learning process, the bee makes its decisions based on
�nite time-windows, and does not compute the long-term mean reward obtained
from each 
ower. This is even more pronounced with high learning rates such as
those evolved (�0.8). After landing on an empty 
ower of the variable- rewarding
type, the bee updates the reward expectation to near zero, and as a result, prefers
the constantly rewarding 
ower, from which it constantly expects (and recieves)
a reward of 1

2
�l. As long as the bee chooses the constant-rewarding 
ower, it will

not update the expectation from the variable-rewarding 
ower, which will remain
near zero. Even after an occasional "exploration" trial in which a visit to the



Fig. 3. Preference for blue 
owers averaged over 40 previously evolved bees tested
in conditions di�erent from those they were evolved in: (a) Risk aversion - Although
both 
ower types yield the same mean reward (blue - 1

2
�l nectar, yellow - 1�l in half

the 
owers, contingencies switched at trial 50), there is a marked preference for the
constant-yielding 
ower. (b) Risk aversion is ordered according to learning
rate. Each point represents the percentage of visits to constant-rewarding 
owers in
50 test trials averaged over 40 previously evolved bees, with a clamped learning rate.
(c-d) Matching - All 
owers yield 1�l nectar with reward probabilities for blue and
yellow 
owers (c) 0.8, 0.4 and (d) 0.8, 0.2 respectively (contingencies switched at trial
50). Horizontal lines - behavior predicted by perfect matching.

variable 
ower yields a high reward, the preference for this 
ower will be short
lived, lasting only until the next unrewarded visit. Note that such abnormally
high learning rates were also used in Montague et al.'s [13] model, and have been
hypothesized by Real [2].

The simulated bees also demonstrate probability-matching behavior. Figure
3(c,d) shows the previously evolved bees' performance when tested in matching
experiments in which all 
owers yield 1�l nectar, but with di�erent reward prob-
abilities. In both conditions, the bees show near-matching behavior, preferring
the high-probability 
ower to the low-probability one, by a ratio that closely
matches the reward probability ratios. This is again a direct result of the learn-
ing dynamics Thus, in contradistinction to previous accounts, matching can be
evolved in a non-competitive setting, as a direct consequence of optimal RL.

5 Robot Implementation

In order to assess the robustness of the evolved RL algorithm, we implemented
it in a mobile mini-robot by letting the robot's actions be governed by a NN
controller similar to that evolved in successful bees, and by having its synaptic
learning dynamics follow the previously evolved RL rules. A Khepera mini-robot
foraged in a 70X35cm arena whose walls were lined with 
owers, viewing the



arena via a low-resolution CCD camera (200x200 pixels), moving at a constant
velocity and performing turns according to the action function (eq. 2) in order to
choose 
owers, in a manner completely analogous to that of the simulated bees.
All calculations were performed in real-time on a Pentium-III 800Mhz computer
(256Mb RAM) in tether mode. Moving with continuous speed and performing all
calculations in real-time, the foraging robot exhibited rapid RL and risk-averse
behavior (Fig. 4). Thus the algorithms and behaviors evolved in the virtual bees'
simulated environment using discrete time-steps hold also in the di�erent and
noisy environment of real foraging mini-robots operating in continuous time.

Fig. 4. Synaptic weights of a mobile robot incorporating a NN controller of one
of the previously evolved bees, performing 20 foraging trials (blue 
owers - 1

2
�l nectar,

yellow - 1�l in half the 
owers, contingencies switched after trial 10). (a) The foraging
robot. (b) Blue and yellow di�erential weights represent the expected rewards from
the two 
ower colors along the trials. Top: Flower color chosen in each trial.

6 Discussion

The interplay between learning and evolution has been previously investigated
in the �eld of Alife. Much of this research has been directed to elucidating the
relationship between evolving traits (such as synaptic weights) versus learning
them [4, 8]. A relatively small amount of research has been devoted to the evo-
lution of the learning process itself, most of which was constrained to choosing
the appropriate learning rule from a limited set of prede�ned rules [7, 5]. In this
work we show for the �rst time, that optimal learning rules for RL in a general
class of armed bandit situations, can be evolved in a general Hebbian learning
framework. The evolved heterosynaptic learning rules are by no means trivial, as
they include an anti-Hebbian monosynaptic term and employ axo-axonic plas-
ticity modulation. We have no rigorous proof as to their optimality, but results
from multiple evolutionary runs strongly suggest this.

The emergence of complex foraging behaviors as a result of optimal learning
per se, demonstrate once again the strength of Alife as a methodology that
links together phenomena on the neuronal and the behavioral levels. We show



that the fundamental macro-level strategies of risk aversion and matching are
a direct result of the micro level synaptic learning dynamics, which control the
tradeo� between exploration and exploitation making additional assumptions
conventionally used to explain them redundant. This result is important not
only to the �elds of Alife and animal learning theories, but also to economics
and game theory.

In summary, the signi�cance of this work is two-fold: on one hand we show
the strength of simple Alife models in evolving fundamental processes such as
reinforcement learning, and on the other we show that optimal reinforcement
learning can directly explain complex behaviors such as risk aversion and prob-
ability matching, without need for further assumptions.
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